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ABSTRACT 

 

Achieving less than ideal productivity is a problem the construction industry faces in most 

advanced countries, including the UK. One way to change this is to improve on-site 

execution by, for example, more accurate planning of construction operations. Despite 

continuous efforts for automation, mechanisation, and off-site production, the construction 

industry can still be considered labour-intensive. Therefore, understanding labour 

productivity and the factors influencing it is vital to better planning. 

Owing to their versatility, durability, long service life, and being low maintenance, bricklaying 

works are ubiquitous, especially in housing and public projects, for example, schools. These 

operations are also especially labour-intensive. Consequently, an examination of 

bricklaying works is important for better planning and management of most construction 

projects. Ultimately, any gains in this operation could lead to an overall increase in site-

based productivity.  

The aim of the research project is to provide a better understanding of the bricklaying 

process and how it can be modelled, descriptively and normatively, to find a modelling 

approach that allows for a better examination of the effects of various factors on bricklaying 

productivity. 

A number of factors influence on-site productivity. This research project focuses on those 

that are known in advance, in the pre-planning phase of the construction projects. These 

are the worker and wall characteristics. 

To analyse bricklaying operations, a hybrid model is created. The effects of the above-

mentioned factors on labour productivity are investigated with the help of the artificial neural 

network component, while the discrete-event simulation part models the process of block- 

and bricklaying. The model is built and tested with the help of real-life data collected at two 

construction projects by conducting a traditional work study. When the productivity rates 

were measured, note was made of the bricklayer working on the course, and the wall section 

where they worked. Site supervisors filled in the questionnaires asking about operative 

characteristics, while the wall characteristics were determined based on the drawings and 

specifications. 

The resulting model can be used to provide more accurate productivity rate predictions for 

more precise time and cost estimates, and improved project planning in bricklaying. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

1.1.1 Productivity 

The global construction industry plays a key role in the world’s economic performance, its 

output in 2020 was 10.7 trillion USD (Robinson et al., 2021). In the UK, 6% of the GDP 

comes from this sector, and if the services of architects and surveyors and the construction-

related manufacturers were included, the figure would be twice as great (Green, 2020). 

However, it has not evolved like other sectors, its productivity lags behind them (Barbosa 

et al., 2017). Achieving less than ideal productivity is a problem most advanced countries 

face, including the UK (Green, 2016). Improving productivity has been an objective of every 

report on the construction sector since the second world war proving that this is not a recent 

development (Murray and Langford, 2003). One way to change this is to improve on-site 

execution by, for example, more accurate planning of construction operations (Barbosa et 

al., 2017).  

Another global issue is the shortage of skilled workers (Karimi et al., 2017; Hasan et al., 

2018; Construction Skills Network, 2021). Moreover, in the UK the workforce is aging, the 

level of new entry is low, and a great amount of the workers are from overseas (Housing 

Communities and Local Government Committee, 2019; Green, 2020; Brooks and 

McIlwaine, 2021). Consequently, having more realistic productivity rates and resource 

usage information available to practitioners is essential. With the help of these, more precise 

schedules and cost calculations can be made, and better resource management can be 

achieved. 

One of the most common concerns within construction-related research is that of 

productivity (Dolage and Chan, 2013; Yi and Chan, 2014). A substantial portion of these 

studies have focused on determining the factors that affect productivity, especially labour 

productivity, and categorising them based on various criteria. Extensive lists of the collected 

influencing factors have been presented. For example, Tsehayae and Robinson Fayek 

(2014) produced a list of 169 such factors, grouping them based on levels: from individual 

activities to the global scale. In some cases, research projects concentrate on how only one 

factor – such as project management (Chan and Ejohwomu, 2018) – affects productivity. 

Several studies focus on productivity in a single country (for example, the study of 

productivity in Oman by Jarkas et al. (2015)), while some investigate the factors in multiple 

countries looking for commonalities and differences (for instance, Sweis et al. (2008)).  
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Usually, either a systematic review of the literature is performed (for instance, Hasan et. al 

(2018) or Yi and Chan (2014)) or a combination of literature review and survey research is 

applied (see Naoum (2016)). The results of the surveys are likely to depend on the group 

of stakeholders responding, as different groups may consider different factors as more or 

less important. Therefore, Hasan et al. (2018) suggested the inclusion of several such 

groups. There are some studies (for example, Kazaz et al. (2016)) revealing the craftsmen’s 

point of view, whereas others (for instance, Proverbs et al. (1998)) instead present the 

contractors’ perspective. In their research project, Tsehayae and Robinson Fayek (2014) 

included both craftsmen and contractors. Additionally, El-Gohary and Aziz (2014) 

investigated the points of view of clients, contractors, as well as consultants. 

Despite continuous efforts for automation, mechanisation, and off-site production, the 

construction industry is still labour-intensive. Therefore, understanding labour productivity 

and the factors influencing it are vital to better planning. Some construction operations are 

especially labour-intensive. For example, in the case of bricklaying works, an operation 

found on most sites, mechanisation is mostly limited to material handling. Consequently, an 

examination of bricklaying works is essential for better planning and management of most 

construction projects. Ultimately, any gains in this operation could lead to an overall 

increase in site-based productivity.  

 

1.1.2 Bricklaying works 

Bricklaying works have been an important part of construction projects for a long time. For 

instance, in England bricks have been used since the early 13th century (Kinniburgh and 

Vallance, 1948). The brickwork built today might be simpler than it used to be, owing to its 

versatility, durability, long service life, and being low maintenance, it is still ubiquitous, 

especially, in housing and public projects, for example, schools. Consequently, studies 

about masonry works are important. There have been research projects focusing on these 

works, for instance, Thomas and Sakarcan (1994) developed the factor model to calculate 

productivity rates. The factors they considered were work type, physical elements, 

construction methods, design requirements, and gang size. These were coefficients added 

to the base unit rate (Thomas and Sakarcan, 1994). In an earlier study of Sanders and 

Thomas  (1993), the environmental factor of weather was taken into account, as well. Later, 

in the model of Thomas and Zavrski (1999) the complexity of design (as work content) was 

among the influencing factors. They introduced a difficulty scale for bricklaying works and 

evaluated the projects according to these criteria. A multiple regression model quantifying 

the effects of the factors was later proposed by Thomas and Sudhakumar (2014). In this, 

the affecting factors in the model entailed overtime, weather parameters, number of 

workers, and Thomas and Zavrski’s (1999) project-level work content scale.  
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In Anand and Ramamurthy’s study (2003) various block and brick sample walls were built 

in a laboratory setting. The measured productivity rates were meant as baseline rates 

because they were considered to be unaffected by the factors typical of live construction 

sites. Nevertheless, workers’ attributes may still influence the rates. This is taken into 

account in, for example, Olomolaiye’s (1988), Sweis et al.’s (2008) and Florez’s (2017) 

research. Olomolaiye (1988) studied how the skills and motivation of workers affect their 

productivity. In his research, skill was defined as a combination of experience, training, and 

natural ability. It was concluded that skills had a greater influence on productivity than 

motivation (Olomolaiye, 1988). Sweis et al.’s (2008) definition of skill contained training, 

work ethics, and motivation. They showed that the skill factor is among the ones causing 

varying productivity rates. Florez (2017) also considered characteristics of bricklayers 

(compatibility, craft, and suitability) important when allocating squads to certain tasks. In 

this model, skill was defined as ‘ability of a worker to perform certain tasks well’ (Florez, 

2017, p. 876). 

To get better productivity rate estimates for bricklaying works in the planning phase of the 

construction projects, a model needs to be developed. This model can also be used to 

investigate the effects of influencing factors (worker and wall characteristics) on the 

productivity rate and to help in the selection of the most suitable labour resource allocation 

options, i.e., how best to assign workers to walls. Machine learning methods can be applied 

in the case of the former, while simulation can be of use for the latter purpose.   

 

1.1.3 Machine learning 

Artificial intelligence (AI) can be used to link the virtual and physical worlds, and with the 

help of intelligent systems, complex, nonlinear problems can be solved (Darko et al., 2020). 

These systems can learn from data and make predictions and generalisations based on the 

acquired knowledge; this is called machine learning (ML), which is a sub-field of AI (Bilal et 

al., 2016). Since the relationship between the influencing factors and construction 

productivity and the combined effect of the factors – due to the interrelationships between 

the factors – are complex, modelling is challenging (Chao and Skibniewski, 1994; Horner 

and Talhouni, 1995). Therefore, construction productivity studies can benefit from the 

application of ML methods, such as artificial neural networks (ANNs).  

ANNs imitate the human brain and central nervous system (Boussabaine and Kirkham, 

2008). Their main components are neurons, which are organised into three different layers, 

which are connected in the following order: input, hidden, and output layers (Moselhi et al., 

1991). The input variables are fed into the input layer, then the signal is transmitted to the 

output layer through the hidden layers, and it gets modified by weights, biases, and transfer 

functions on its way (Flood and Kartam, 1994a). ANNs work like a black box, meaning that 

their workings are hidden from the user (Adeli, 2001). 
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One advantage of ANNs is that they can be trained with even imperfect datasets, and 

provide quick and generalised solutions to problems (Flood and Kartam, 1994a). Another 

is that ANNs can be applied when the relationships between the independent and 

dependent variables are subject to uncertainty (Di Franco and Santurro, 2020). 

Due to these favourable characteristics, ANNs have been used in construction management 

studies. El-Gohary et al. (2017) used ANNs to gain more accurate productivity rates for 

concrete works. Tsehayae and Robinson Fayek (2016) analysed the productivity influencing 

factors for the same trade. Badawy et al. (2021) developed an ANN model to be able to 

predict the productivity rate of reinforcing works based on physical attributes of the works 

(for example, the diameter of the rebar). Gerek et al. (2015) created two ANN models to 

study the productivity of bricklaying gangs. The chosen factors were mostly gang (for 

example, experience) and management-related with a couple factors regarding the design 

of the walls (Gerek et al., 2015). To further improve the capabilities of ANNs, they can be 

combined with other methods. For example, neurofuzzy models are the product of marrying 

ANN with fuzzy logic (FL). Omar and Robinson Fayek’s (2016) fuzzy neural network models 

were created to identify and quantify the relationships between the functional and 

behavioural competencies (i.e., knowledge and skills stemming from the organisations and 

the individuals) and the projects’ key performance indicators.    

 

1.1.4 Simulation 

In such instances, when it would be too risky, costly or lengthy to make experiments with 

the actual system, a model needs to be developed (Law, 2015). This can be used to test 

theories, to see how the system changes due to the change of certain variables. This model 

can either be a physical or a mathematical one (Law, 2015). In the case of construction 

processes, the latter is required. In some cases, a mathematical model can be analytical, 

which is able to provide an exact solution. However, when only a numeric evaluation is 

possible, a simulation model is preferred (Law, 2015).  

The link-node model developed by Teicholz in 1963 can be considered as the first example 

for construction simulation (AbouRizk et al., 2011). In the past decades, numerous different 

models were presented. The examples used in these studies were mostly machine-driven 

works, such as earthworks (see, for example, Alzraiee et al. (2012)), reinforced concrete 

works (see, for instance, Khanzadi et al. (2018)), or civil engineering works (see, for 

example, AbouRizk (2010)). However, due to labour resources (especially skilled) being 

scarce, more complex, less predictable and involving more risks than plants or materials, it 

is probably more important to model labour-intensive works, such as bricklaying works, with 

simulation.  

There are three basic simulation methods: discrete-event simulation (DES), system 

dynamics (SD), and agent-based modelling (ABM) (Borshchev, 2013; Raoufi and Robinson 
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Fayek, 2020). Discrete-event simulation has been used for the longest time in construction 

and is possibly the most widespread simulation method (AbouRizk et al., 2011). It 

concentrates on the process itself. Passive objects, called entities, go through the workflow, 

where they get created, held, queued, and released. For example, Kim et al. (2021) applied 

DES to obtain the duration of in-situ concrete works taking gang size and spatial conflicts 

into account.  

System dynamics developed by Forrester (1961) is a top-down method. It focuses on the 

affecting factors, their effects and interrelationships. Both qualitative and quantitative 

models can be created using system dynamics (Kunc, 2017). The former is a causal loop 

diagram showing balancing and reinforcing relationships, while in case of the latter, the 

model is comprised of stocks and flows, and the relationships are expressed using 

equations. With the help of SD, Al-Kofahi et al. (2020) studied how and to what extent 

owner-liable change orders affect labour productivity.  

The third basic simulation method is agent-based modelling, which – in contrast with system 

dynamics – has a bottom-up approach. Global behaviour emerges from the interaction and 

behaviour of the individual agents, which are heterogeneous and have various attributes. 

For instance, Watkins et al. (2009) used ABM to determine how site congestion affects 

productivity with two agent types being defined: workers (with variables such as skill level) 

and activities.  

There are several examples for the individual application of the basic simulation methods; 

however, it can be more beneficial to combine them. This way, the individual advantages of 

each method can be united, while their individual disadvantages can perhaps be overcome. 

Different elements of a system can be modelled with the help of different methods and such 

combinations can potentially provide better representations of reality (Borshchev and 

Filippov, 2004; Borshchev, 2013). For example, Khanzadi et al. (2018) used an integrated 

SD-ABM simulation approach to study how site congestion affects productivity. 

 

1.2 Research aim and objectives 

The aim of the research project is to provide a better understanding of the bricklaying 

process and how it can be modelled, descriptively and normatively, to find a modelling 

approach that allows for a better examination of the effects of various factors on bricklaying 

productivity. To achieve this, the following objectives are set: 

 

1. To explore how construction productivity can be modelled. This entails examining 

various methods used on different levels of productivity and selecting the most 

suitable modelling approach that fits the aim of the study. 

2. To study bricklaying works, bricklayers’ characteristics, and gang composition. This 

includes taking time measurements and observations so as to gather knowledge on 
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the workflow of the operation, various materials, different wall types, bricklayers, and 

resource allocation. This is necessary for determining the building blocks of the 

model and assembling the data table fed into the model.   

3. To investigate the factors influencing construction labour productivity. This entails 

the selection of the most relevant factors in the planning phase of construction 

projects, and brickwork in particular. 

4. To create the model using the selected method including the chosen factors. 

5. To analyse how the selected factors affect productivity. This can be achieved with 

the help of the model and statistical analyses. 

6. To test the model by running it with model project data. This includes creating model 

wall sections, bricklayers, and bricklaying gangs. This enables testing the resource 

allocation implications of bricklaying gang compositions. 

 

1.3 Contributions 

As shown in section 1.1, there is a need for accurate productivity rates; however, most 

existing models do not take the human component into account, that is, how worker-related 

factors may affect productivity rates. This research project considers both worker and wall 

characteristics, which are known in the planning phase of construction projects.  

A hybrid DES-ANN model is developed to better estimate the bricklaying process duration 

in the planning phase of the project, taking the previously mentioned factors into account. 

Better productivity estimates can lead to more realistic schedules and cost calculations. In 

addition, the model is capable of testing resource allocation options to find the optimal one, 

thus resources can be better planned and managed. While, in this thesis, the model is 

applied for bricklaying works and a certain set of factors that influence productivity are 

considered, by following the same steps different factors or different operations can be 

modelled. 

As part of this research project, with the help of the developed model and extensive 

statistical analyses, the effects of the chosen factors on productivity are examined. 

Understanding the effects of these worker and wall-related factors can also aid project 

planning. 

The frameworks developed for the two model components (artificial neural networks and 

simulation) are also contributions of this research project. These can be used individually 

or in combination for hybrid models to model construction productivity. 

 

1.4 Research process 

Figure 1.1 – from left to right – shows the steps of the research process together with the 

details and output of each step and the corresponding research objectives. The first step is 

to set the aim and objectives of the research project. Next comes an extensive literature 
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review concentrating on the following topics: construction productivity, labour productivity, 

productivity influencing factors and modelling methods applied in productivity studies, and 

research on bricklaying productivity. As a result of this step, the modelling method fitting the 

research aim can be chosen along with the productivity influencing factors to be included in 

the study. The next step is the collection and processing of data. This consisted of structured 

observations of brickwork on construction projects, where the site managers are also asked 

to evaluate the bricklayers, and interviews with bricklaying experts. The data collection 

provides the dataset used for both modelling and analysis and the description of the 

bricklaying process. The influencing factors selected during the literature review stage are 

refined and complemented in this step. After the collected data is processed, modelling can 

start: the hybrid DES-ANN model is created. In the next step, model project data are input 

into the model, which produces process durations as output. At the analysis stage, the 

effects of the influencing factors on productivity are determined based on the sensitivity 

analysis of the ANN model component and the statistical analysis of the collected data. 

Moreover, the output of the simulation runs is also analysed to compare different resource 

allocation options. Finally, the conclusions are drawn based on the analyses to provide 

contribution to both knowledge and practice.  
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Figure 1.1. Research process 

 

1.5 Overview of the thesis 

The purpose of the current chapter is to briefly describe the context of the research, 

introduce the research project and show how it contributes to the body of knowledge.    

The next chapter gives an overview of the literature relevant to the research topic. It starts 

with the introduction of general productivity concepts and skill shortage. Then comes a 

comprehensive discussion of productivity studies, first, with respect to the productivity 

influencing factors collected, second, the most commonly used methods, such as statistical 

analysis, genetic algorithms, and expert systems, are presented together with numerous 
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examples for their application. Machine learning and simulation methods are extensively 

discussed with special attention to hybrid models, where different methods are combined. 

The chapter ends with an exhaustive review of bricklaying productivity studies.  

The third chapter discusses the decisions made about conducting the research from the 

philosophical considerations, through research design, to research methods. Data 

collection and processing are also included in this chapter. 

The developed hybrid model combining artificial neural networks (ANN) with discrete-event 

simulation (DES) is discussed in three parts. Chapter 4 explains which productivity 

influencing factors were selected for the model and describes these in detail. The process 

of brickwork construction used in the model is also described. The ANN model component 

is presented in Chapter 5, which also includes the framework developed for modelling 

productivity with ANN. The DES model component is discussed in Chapter 7, which entails 

the framework developed for construction simulation modelling for productivity studies. 

Furthermore, this chapter describes the details of the model project. 

The sixth chapter details the statistical analyses used for examining the collected 

productivity data and their results. 

Chapter 8 discusses the results of both the sensitivity analysis of the ANN model component 

and the statistical analyses. In addition, it presents the results and analysis of the output of 

the DES model component.  

The conclusions drawn from the study and recommendations for further investigation of the 

topic can be found in Chapter 9. 

 

1.6 Chapter summary 

This chapter aimed to give a brief overview of the research project, which investigates 

construction labour productivity of bricklaying operations. First, the background of the 

research was presented. After an introduction to construction productivity and bricklaying 

operations, the methods selected for modelling were described, starting with machine 

learning, then simulation. The next section discussed the research aim and the objectives 

set to achieve this aim. Then the research’s contribution to knowledge and practice were 

presented. The steps of the research project together with their details, output, and link to 

the research objectives were explained next. The final section gave an overview of the 

thesis listing its chapters with their brief contents.  
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CHAPTER 2 

LITERATURE REVIEW – CONSTRUCTION PRODUCTIVITY 
STUDIES 

 

2.1 Productivity 

2.1.1 General concepts 

The global construction industry has a significant output (10.7 trillion USD in 2020); 

therefore it is an important part of the world’s economy (Hillebrandt, 2000; Barbosa et al., 

2017; Robinson et al., 2021). In the UK, this contribution to the GDP is 6%; however, this 

does not include plant hire, construction-related manufacturing, and the services of 

architects, engineers, and surveyors, which account for approximately the same output 

share (Green, 2020). In May-June 2020, construction output sharply decreased due to the 

COVID-19 pandemic; however, it is expected to return to 2019 levels in the first half of 2022 

(Construction Skills Network, 2021). In addition, the built environment affects other 

industries and their productivity by having an influence on people’s happiness, health, and 

safety (Green, 2016).  

The construction industry can still be considered labour-intensive. In the UK, it employs 

more than 7% of the labour force (2.3 million people), and further hundreds of thousands of 

people work in related businesses (Green, 2020). The workforce is expected to grow 1% 

annually, this way, by 2025 construction workforce is predicted to reach 2.84 million 

(Construction Skills Network, 2021). These people buy goods and services of other sectors, 

which ultimately generates employment in those sectors, as well (Hillebrandt, 2000). This 

way the economy as a whole is affected by the construction industry but the construction 

industry is also affected by the economy (Hillebrandt, 2000). Therefore, the fluctuations of 

the output of the construction industry are a result of the fluctuations of the economy as a 

whole plus the unique quality of the product, the built environment (Hillebrandt, 2000). Due 

to this two-way relationship, according to Green (2016), the construction industry should not 

be studied in isolation but as a part of the economy, and the goal should be the improvement 

of the economy as a whole (Green, 2016). Despite this, the construction industry is often 

used by governments to boost the economy, to reduce the fluctuations, even though this is 

a complicated endeavour as the effects of the measures are delayed (Hillebrandt, 2000).  

Owing to the nature of construction projects, the industry is in the public eye, and the public 

often feels that its performance does not meet the expectations (Morton and Loss, 2008). 

Furthermore, from time to time, the construction industry is accused of not changing (Murray 

and Langford, 2003). For instance, Rudyard Kipling mentioned this in his poem, The Truthful 

Song (Kipling, 1910): 
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“The Bricklayer:— 

I tell this tale which is strictly true, 

Just by way of convincing you 

How very little since things were made 

Things have altered in the building trade.” 

It is true that there are aspects of construction that have not changed, but others have 

(Morton and Loss, 2008). For example, the basic idea of bricklaying was the same in ancient 

Egypt; however, now the mass production of bricks is quality-controlled (Morton and Loss, 

2008). 

Construction productivity has been the subject of multiple avenues of research, such as 

academic (vast number of books, countless conference and journal papers), industrial 

(conducted by, for example, The Chartered Institute of Building, the Construction Industry 

Training Board, the Construction Leadership Council, McKinsey Global Institute), and 

governmental (numerous reports, for example, the Latham report (1994) and the Egan 

report (1998)). All these studies have attempted to answer the question why the 

construction industry’s productivity is lagging behind other sectors and how it could be 

helped. Global construction labour productivity has only grown by an average of 1% over 

the past 20 years (Barbosa et al., 2017). In the UK, this number is smaller or even negative, 

therefore, it lags behind other developed nations (Green, 2016). 

In general, productivity is calculated as the ratio of the total output and the weighted average 

of the inputs (Samuelson and Nordhaus, 2010). In the case of single factor productivity, 

only one input type is considered, for example, labour productivity is the output per unit of 

labour, usually a time dimension. While total factor productivity is the output divided by the 

total input (Samuelson and Nordhaus, 2010). Productivity can also be calculated on various 

levels determining both the output and the input. Bernold and AbouRizk (2010) defined four 

different layers: process, production, accounting, and economic. Ayele and Robinson Fayek 

(2018) proposed similar levels: activity, project, and industry. The productivity measure on 

the lowest level is typically physical, for instance, m2/h (Bernold and AbouRizk, 2010; Chan 

and Gao, 2019). Examples for further levels can be seen in Table 2.1. The productivity 

measured on the lower levels can be aggregated to get the productivity indicators of the 

higher layers (Chan and Gao, 2019). 

 

Level Productivity measure Dimension example 
Process physical output/input m2/h 

Production output/cost m2/£ 

Accounting value added/input £/h 

Economic income/input income/management h 
Table 2.1 Examples for productivity measures on different levels (based on Bernold and AbouRizk 

(2010)) 
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Table 2.2 shows examples for various labour productivity measures used for different 

purposes listed by Horner and Talhouni (1995). In these cases, the output is the same; 

however, the inputs are different. The third measure reflects the effects of intrinsic variables, 

such as the ones characterising the workforce (for example, their skills), or the work 

performed (for example, its complexity), and the environment (project characteristics). The 

second measure includes the impact of both management and operatives (Horner and 

Talhouni, 1995). 

 

Formula Input Purpose 
Output/Total time Total time Tendering purposes 

Output/Available time = Total time – Unavoidable 

delays  

Delay claims 

Output/Productive time = Available time – Avoidable 

delays 

Research purposes 

Table 2.2 Labour productivity measures with different time inputs (based on Horner and Talhouni 

(1995))  

 

As evidenced above, a great number of variations of the basic productivity ratio exist. 

Tangen (2005) included many more examples in their study and argued that the 

mathematical formulae derived from these definitions tend to cover only a fraction of the 

real meaning of productivity. Depending on the purpose of determining productivity, various 

outputs and inputs are measured over different time periods (Thomas and Kramer, 1988; 

Horner and Duff, 2001). Then either the calculated productivity is compared to a standard 

or its changes over time are investigated (Tangen, 2005).  

Productivity can increase in five ways (Tangen, 2005): 

 the output remains the same but the input decreases, 

 the output increases, while the input remains the same, 

 the output increases and the input decreases, 

 both the output and the input decrease but the decrease of the latter is proportionately 

greater, 

 both the output and the input increase but the increase of the former is proportionately 

greater. 

Productivity and performance both appear in the literature; however, they are not synonyms. 

Performance is a broader term including the concepts related to cost, speed, flexibility, 

dependability, and quality objectives that considers the success of different levels (activities, 

project, company etc.) (Tangen, 2005). Soewin and Chinda’s (2020) construction 

performance index contained even more factors, such as health and safety and client 

satisfaction, 10 in total, divided into 57 items. 
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2.1.2 Skilled labour shortage in the UK 

Construction labour productivity depends on the people involved in the projects to a great 

extent. The people are the industry’s greatest, most critical assets (Construction Task 

Force, 1998; Bernold and AbouRizk, 2010). It is important for research to focus on labour 

productivity and investigate why there could be such great differences between the 

productivity of different workers, or the same ones at different times (Horner and Talhouni, 

1995; Horner and Duff, 2001). The Egan Report (1998) also suggested that only a fraction 

of the possible labour efficiency is achieved. Operatives and white-collar workers are 

equally needed for increasing productivity (Murray and Langford, 2003). However, the 

number of skilled labour is decreasing. 

In the 19th and the beginning of the 20th century, the number of apprentices was limited in 

order to prevent an oversupply of trained craftsmen (Morton and Loss, 2008). However, due 

to the increase in construction projects in the post-war era, there was a skill shortage, which 

has been present since then (Morton and Loss, 2008; Farmer, 2016; Parsons and 

Rubinsohn, 2021). Owing to the industry not being attractive enough for young people, the 

level of new entrants is low, while the current labour force is ageing leading to a significant 

decrease in available workforce (Farmer, 2016; Brooks and McIlwaine, 2021). Furthermore, 

many workers leave the industry in recession periods (Morton and Loss, 2008). The influx 

of migrant workers seemed to have provided a solution; however, a great portion of them 

have left due to Brexit (Winterbotham et al., 2021). 

A viable way to tackle skill shortage is the application of modern methods of construction 

(MMC). However, the relationship between MMC and skill shortage resembles the chicken-

egg problem: it is not clear which one was first (Construction Skills Network, 2020). Although 

MMC is largely synonymous with pre-manufacturing, it has categories for on-site 

productivity improvement, as well (Housing Communities and Local Government 

Committee, 2019). In addition, the effectiveness of advanced technologies depends on the 

people using them (Morton and Loss, 2008). The high level of digitalisation typical of MMC 

can also make the industry more attractive for young people, thus raising the level of new 

entrants (Housing Communities and Local Government Committee, 2019). Furthermore, a 

greater extent of pre-manufacturing means that different skills are needed (Morton and 

Loss, 2008). Upskilling, reskilling, cross-skilling, and multiskilling are required (Moehler et 

al., 2008; Construction Skills Network, 2020). Various cross-training strategies can be 

utilised to train single-skilled workers to be multiskilled, whose employment may result in 

reduced construction times and costs with an added benefit of increased safety (Nasirian 

et al., 2019). Multi-skilled labour can be well used in off-site construction (Barkokebas et al., 

2020). However, it can also be beneficial to mix multi-skilled with single-skilled operatives 

in on-site construction gangs (Ahmadian Fard Fini et al., 2016).  
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Despite the technological advances, construction projects are still labour-intensive. To meet 

the growing demand set by the increasing construction output, a competent, skilled, and 

trained workforce is crucial (Construction Skills Network, 2021). According to the 

Construction Skills Network’s (2021) report, over the next 5 years, 216,800 workers will 

need to be recruited in  the UK. Bricklayers have the fourth highest annual recruitment 

requirement after wood trades and interior fit-out, electrical trades, and labourers 

(Construction Skills Network, 2021). Owing to the ever-growing number of workers, on-site 

workforce organisation matters. By improving on-site execution, the productivity of the 

construction industry may also increase (Barbosa et al., 2017). Productivity growth is vital 

for economic growth, to improve the standard of living (Green, 2016).   

 

2.1.3 Why study labour productivity? 

As evidenced above, the output of the construction industry is crucial to a nation’s and also 

to the global economy. An important way to improve construction productivity is through the 

people working in the industry (Construction Task Force, 1998; Barbosa et al., 2017; 

Construction Skills Network, 2021). However, the supply of skilled labour has not matched 

the growing demand due to the ever-increasing number of construction projects. Therefore, 

it is crucial to manage skilled labour appropriately. Furthermore, the industry’s productivity 

is the aggregation of the productivity of the lower levels. Consequently, it is important to 

focus on the micro level, that is where productivity improvement can happen (Pekuri et al., 

2011). Understanding the productivity of the gangs through modelling is the key to 

strategies for productivity improvement on the higher levels (Thomas et al., 1990). For this, 

both the workers and the work to be performed need to be studied (Hasan et al., 2018).          

The coming sections introduce studies collecting the factors influencing productivity, 

methods applied to investigate the effects of the factors on productivity, and the research 

efforts concentrating on the productivity of bricklaying operations. 

 

2.2 Productivity influencing factors 

The number and type of factors in the studies depend on the objectives of the research. If 

the goal is to present a collection of factors, a great number of factors are amassed, while 

in the case of modelling a specific operation, only a much smaller subset of factors is 

included because the high number of factors would make modelling impossibly complex, 

and ultimately, unusable. Furthermore, it might be too difficult to collect data for certain 

variables (Horner and Talhouni, 1995; AbouRizk et al., 2016). Graham and Smith (2004) 

suggested that at each stage the model should only entail known and significant variables. 

This provides one possible categorisation of factors; however, there are numerous other 

ways. Due to productivity being measured at industry, project, and activity levels, the factors 

affecting productivity can also be collected for the levels separately (Yi and Chan, 2014). 
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Another possibility is to consider the time the impact of the factor is present, this way factors 

can have short-term effects, long-term effects, and long-term effects with ripple effect 

(Moselhi and Khan, 2012).  

The list of factors might be different in different countries, in developed and developing 

countries. Hasan et al. (2018) argues that a few important factors are the same regardless 

of the country. The significance of certain factors can also be different depending on who 

ranks them: craftsmen’s opinion might differ from that of managers, or consultants.  

There are numerous studies providing a systematic review of productivity literature. For 

example, Hamza et al. (2019) compiled a list of the highest ranking influencing factors in 

the literature. Worker experience, motivation, and skills were in the top 5 (Hamza et al., 

2019). Usually, after collecting the factors, various project stakeholders are asked to 

express their opinions about the importance, impact, or severity of the factors. This is most 

commonly done through questionnaires but other methods, for instance, interviews are 

used sometimes. Table 2.3 contains a number of such studies conducted in various 

countries.  

 

Study Country Perspective 
Naoum (2016) UK Contractors 

Tsehayae and Robinson Fayek (2014) Canada Contractors 

Craftsmen 

Maqsoom et al. (2019) Pakistan Contractors 

Dai et al. (2009) USA Craftsmen 

Kazaz et al. (2016) Turkey Craftsmen 

Hai and Van Tam (2019) Vietnam Craftsmen 

Alaghbari et al. (2019) Yemen Consultants 

Academics 

El-Gohary and Aziz (2014) Egypt Clients 

Contractors 

Consultants 

Durdyev and Mbachu (2011) New Zealand Contractors 

Consultants 
Table 2.3 Examples for studies with collections of productivity influencing factors  

 

Naoum (2016) divided the 46 factors into 5 categories (pre-construction activities, activities 

during construction, motivational and social, organisational, management-related) and 

interviewed contract and site managers in the UK. Pre-construction planning was found to 

be the most important factor based on the ranking by the relative importance index (Naoum, 

2016).   
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Tsehayae and Robinson Fayek (2014) compiled a list of 169 factors influencing productivity 

from the activity level through the project and organisation levels to the global level. Their 

survey showed that project managers and craftsmen regarded different factors important. 

The biggest difference in the case of building projects was in the ranking of gang 

competence and experience, which had a high rank for positive effect in the trade 

respondents’ list. Similarly, in the case of industrial projects, good relationship between the 

members of the gang was regarded important for positive effect by the craftsmen; however, 

project managers considered other factors to be more significant (Tsehayae and Robinson 

Fayek, 2014). 

Maqsoom et al. (2019) collected 55 factors that have an impact on time delays and invited 

contractors to rate the importance of each of them. The responses were analysed against 

firm size and industry experience. There were significant differences between the groups, 

regarding, for example, the factors related to skilled labour. Due to an increase in the 

number of construction projects in Pakistan, skill shortage emerged, making it difficult for 

young and small firms to find skilled labour. This was their biggest issue, while more mature 

companies felt that more accurate planning of projects was needed to better estimate 

durations (Maqsoom et al., 2019).  

Dai et al. (2009) asked craftsmen about their perception of the 83 identified factors, which 

were generally from the activity level. The workers’ qualification was among the areas which 

was most likely to contribute to productivity improvement. It was argued that it was important 

to include craftsmen in efforts aiming to increase productivity (Dai et al., 2009). Kazaz et al. 

(2016) also studied the craftsmen’s perspective. Based on the relative importance index of 

the 37 factors, they found that the organisational factors (such as quality of site 

management) and – as an individual factor – having social insurance were considered the 

most important factors (Kazaz et al., 2016). Craftsmen were asked to rate the impact of 43 

factors by Hai and Van Tam (2019), as well. The experience of the workers was ranked 

highest overall, and the group of gang-related factors was found to be the most important 

by the respondents (Hai and Van Tam, 2019).    

Alaghbari et al. (2019) chose to study the perspective of consultants and academics; 

however, experience and skills of the workers ranked first out of the 52 factors in this case, 

as well. The technical and technological factor group, including, for instance, the complexity 

of design, had the highest rank among the groups (Alaghbari et al., 2019). Out of the 30 

factors consultants, contractors, and clients asked by El-Gohary and Aziz (2014) also found 

labour experience and skills to be the most important productivity influencing factor. The 

perspective of consultants and contractors was also studied by Durdyev and Mbachu 

(2011). Level of experience and skills ranked high in this case, as well. However, project 

management related factors were considered to be more important out of a collection of 56. 

Factors internal to the project were found to contribute more to on-site productivity than 

external ones (Durdyev and Mbachu, 2011). 
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The number of factors in the above studies demonstrates that a great amount of them can 

be collected; however, it is not practical to use all of them when modelling construction 

operations. In addition, this also shows that worker-related factors are among the most 

important ones in such long lists. Despite this, Hasan et al. (2018) recommended even more 

labour-related factors to be included in productivity studies.        

There are research efforts focusing on factors affecting the motivation of workers, which 

ultimately, impacts their productivity. One example is Raoufi and Robinson Fayek’s (2018a) 

research, which considered the motivation of gangs, not individual operatives. Gangs were 

in the focus in Loganathan and Forsythe’s (2020) study, as well. They developed a 

framework to investigate the role of teamwork in construction gangs in improving 

productivity. The inputs were characteristics of tasks (for example, difficulty) and gangs (for 

example, composition).  

After the subset of factors is chosen, corresponding data needs to be collected, finally, their 

effects can be analysed using various methods. The next section introduces the methods 

most commonly applied in productivity studies. 

 

2.3 Productivity studies: applied methods 

2.3.1 Methods to measure efficiency and productivity 

In the case of productivity studies, as with any other research, data need to be collected. 

These can come from various sources and are different on different levels. An obvious 

source on the activity and project levels is the construction site. Here different observations 

can be made for different purposes. One such aim is to investigate the efficiency of the 

operatives. Efficiency is determined by the utilisation of the available resources, hence 

connected to the denominator of the productivity ratio (Tangen, 2005) (see Table 2.2.). One 

way to measure this is to do activity sampling. The most commonly used method is work 

sampling (Thomas and Daily, 1983). This entails a great number of short, random, non-

continuous observations over a period of time (Olomolaiye et al., 1998). The main concept 

is that these occurrences follow the same distribution as the entire operation (Olomolaiye 

et al., 1998). The goal is to measure time utilisation (Thomas et al., 1984). Typically, 

productive and unproductive categories are chosen; however, more activity groups can be 

defined to facilitate a better analysis (Wandahl and Skovbogaard, 2017). In the case of each 

observation, the category is noted (Bernold and AbouRizk, 2010). The number of necessary 

observations depends on the desired accuracy, confidence level, and the estimated 

proportion of the smallest category (Meyers, 1992).  

Hajikazemi et al. (2017) applied work sampling to measure the efficiency of electrical 

installations at eight Norwegian construction projects. On average, approximately 60% of 

the time was spent on value-adding activities, 30% on preparation, and 10% was the time 

loss (Hajikazemi et al., 2017). The results of Josephson and Björkman’s (2013) study 
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showed a different ratio. In the case of the selected eight Swedish projects, on average, 

direct work was performed 13% of the work day, while preparation took 52%, and 35% was 

waste (Josephson and Björkman, 2013). Wandahl and Skovbogaard’s (2017) study 

produced different results for the observed pre-fabricated façade panel installation works in 

Denmark. In this case, the productive work added up to 30%, while the contributory work 

was 50%, and the waste 20% (Wandahl and Skovbogaard, 2017). 

Another method to study time utilisation is five-minute rating. While work sampling can be 

used on the project level, five-minute rating is better suited to measure the efficiency on the 

process level (Gong et al., 2011). Gangs should be observed for at least as many minutes 

as the number of members but at least for five minutes (Thomas and Daily, 1983). At each 

observation interval, it should be noted whether the given operative is active for at least half 

of the interval (Dozzi and AbouRizk, 1993). This means that in the case of five-minute rating 

there are only two categories: working and not working (Gong et al., 2011). Gong et al. 

(2011) analysed almost 40 years’ worth of work sampling and five-minute rating data 

collected at various construction sites in the USA. Results of the former indicated that 

operatives spend 44% of their time on value-adding work, 31% on supportive activities and 

25% was the time loss. Five-minute rating showed a 55% efficiency. They found that the 

direct work ratio had not changed significantly over time, and that while project type did not 

affect it significantly, it was significantly higher in the case of certain activities, for example, 

masonry, and it decreased significantly with the increase in the number of members of the 

gang (Gong et al., 2011).  

It is important to note that highly active workers are not necessarily highly productive 

because their output might not be high (Thomas et al., 1984; Gong et al., 2011). It is possible 

that due to a new method or equipment, the proportion of direct work decreases, which can 

even result in a negative correlation between value-adding work and productivity 

(Josephson and Björkman, 2013).  

Time data for productivity studies can come from various sources. One possibility is to 

gather historical or current data from contractors. This typically means daily output data. 

Another option is to perform a time study. Taylor (1911) recommended scientific studies to 

be conducted in order to set standard times for jobs. First, the work needs to be broken 

down into elements, and then the time spent on each element should be measured (Taylor, 

1911). Time studies can benefit from the use of image capturing. This way fewer observers 

are needed, and the recorded video can be more easily, reliably, and thoroughly analysed 

(Bernold and AbouRizk, 2010).  

Mani et al. (2014) used a combination of fixed and moving camcorders to record electrical 

installations. The measurements of the activity elements were made while watching the 

footage. Then probability distribution functions were fitted to the collected data to determine 

the optimal productivity of the works (Mani et al., 2014). Forsythe and Sepasgozar (2019) 

investigated prefabricated timber cassette installation with the help of time-lapse 



19 
 

photography. Statistical analysis was performed on the collected crane cycle times to 

recommend changes to improve productivity (Forsythe and Sepasgozar, 2019). Mao et al. 

(2018) complemented the time study with collecting data from questionnaires completed at 

regular intervals and from wearing a smart band measuring the workers’ heart rate to assess 

the physical and psychological state of bricklayers. 

 

2.3.2 Methods to investigate the effects of the influencing factors 

A vast number of studies explored the effects of various factors on productivity. 

Experimenting on the real system would involve too high risks, costs, and time; therefore 

models need to be developed (Law, 2015). In general, models can be physical or 

mathematical. The latter is suitable for modelling construction processes (Law, 2015). With 

these models, the individual and combined influence of the selected factors can be 

determined. These models can take various shapes and forms and can be different on 

different levels of productivity. The most popular methods are discussed below. 

 

2.3.2.1 Statistical analysis 

Statistical analyses are not only used to determine the influencing factors but also to 

determine the effects of these factors. Among the possible choices, regression analysis is 

one of the most preferred ones. By using regression models, the dependent output variable 

– productivity in this case – can be predicted based on the independent predictor variables, 

i.e., the various influencing factors. Karimi et al. (2017) investigated the effects of the 

availability of skilled labour on schedule performance and project productivity by performing 

a series of linear regression analyses. They found that increased craft recruiting difficulty 

leads to increased schedule overruns and decreased project productivity (Karimi et al., 

2017). Gurmu (2019) ran both linear and logistic regression analyses to study the influence 

of material management practices on project productivity. The developed model can help 

project managers to plan appropriate material management practices on multi-story building 

projects (Gurmu, 2019). Gurmu and Aibinu (2017) used a similar methodology to investigate 

how equipment management practices may enhance project productivity. Jarkas (2016) 

applied multiple regression analysis to examine the effects of various buildability factors on 

formwork labour productivity. Variability of beam sizes and usable floor area were found to 

be most important among them (Jarkas, 2016). Chih et al. (2017) also used regression 

analysis in their study, which concluded that good supervisor-worker relationship meant the 

presence of positive feelings, which – through stronger job embeddedness – could lead to 

better productivity. Raoufi and Robinson Fayek’s (2018b) research applied hierarchical 

regression analysis to determine which situational/contextual factors (for example, foreman 

knowledge) can affect the relationship between motivation and gang productivity. According 
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to this, the characteristics and skills of the foremen play an important part in the motivation-

performance relationship (Raoufi and Robinson Fayek, 2018b).  

 

2.3.2.2 Artificial intelligence 

Artificial intelligence (AI) can help actively connect the physical and virtual worlds (Darko et 

al., 2020). While AI was established as a research field in the 1950s, it has only been used 

in construction research since the 1970s with a sharp increase in the number of publications 

in the 21st century (Darko et al., 2020).  Intelligent systems can be applied to solve complex, 

nonlinear problems (Darko et al., 2020).  They are capable of quick and accurate analysis 

of vast amounts of data (Darko et al., 2020). They can also to learn from big data and use 

the acquired knowledge to make predictions and generalisations (Darko et al., 2020). This 

is called machine learning (ML) (Bilal et al., 2016). Many methods – including artificial neural 

network (ANN) and genetic algorithms (GA) – belong to this sub-field of AI. Their application 

in productivity research is discussed in detail in Section 2.4. 

 

2.3.2.3 Simulation 

Mathematical models can be analytical and provide exact solutions but sometimes only a 

numeric evaluation is possible, in which cases, simulation can be useful (Law, 2015). 

Simulation is suitable for studying complex systems by making models of them and 

experimenting with them as if they were physical models (White and Ingalls, 2017). The 

observations made during the running of these tests are then used to understand these 

complicated systems, make generalisations, optimisations, and recommendations for 

improvement (AbouRizk and Mohamed, 2000; White and Ingalls, 2017). Teicholz’s link-

node model developed in 1963, which helped with the selection of the equipment used for 

earthworks, could be considered the forerunner of construction simulation (AbouRizk et al., 

2011). Simulation too has been evolving with the development of computers. The various 

methods selected for productivity studies will be introduced in Section 2.5.  

 

2.3.2.4 Fuzzy logic 

Problems in the construction industry are not only complex but also include a high degree 

of uncertainty. Fuzzy logic (FL) is capable of modelling this uncertainty (Robinson Fayek, 

2020). Fuzzy sets can be used when owing to subjective or vague measures, imprecise, 

nonstatistical data or incomplete information, the boundaries of the parameters’ states are 

not sharp (Zadeh, 1980; Robinson Fayek, 2020).  

Ayyub and Haldar (1984) proposed the use of FL for including uncertainties given in 

linguistic terms in project schedules. Weather conditions and the experience of the workers 

were arbitrarily selected as factors in their example. The modified activity durations were 
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calculated based on the frequency of occurrence of the factors, their negative effects on the 

duration and the membership functions (Ayyub and Haldar, 1984). Robinson Fayek and 

Oduba (2005) analysed two activities from a real-life industrial construction project with the 

help of FL, collected the factors affecting productivity (in two sub-models to decrease the 

size of the model) and the related ‘if-then’ rules. Triangular and trapezoidal membership 

functions were used, complete with experts’ estimates for the endpoints. These results were 

then compared to actual project data (Robinson Fayek and Oduba, 2005). With the number 

of factors increasing, the amount of rules grows exponentially; therefore, Shaheen et al. 

(2009) proposed to gather the related factors under blocks. Lorterapong and Moselhi (1996) 

introduced FNET (fuzzy network scheduling), in case there is no available historical data or 

fair expert estimate. The proposed method produces more realistic results in the backward 

pass, affecting criticality, than previous efforts of using fuzzy sets in network scheduling 

(Lorterapong and Moselhi, 1996). Guo et al. (2017) applied FL to forecast the duration of 

wind-sensitive activities of wind turbine construction projects. Using their proposed system, 

schedulers can calculate activity durations based on wind data given in linguistic and 

qualitative terms (Guo et al., 2017).  

 

2.3.2.5 Genetic algorithms (GA) 

Genetic algorithms are metaheuristic algorithms used for nonlinear, complex optimisations 

that work on the principles of natural selection present in biological evolution (Al-Bazi and 

Dawood, 2010; Mirahadi and Zayed, 2016; Hyun et al., 2021). Selvam et al. (2020) used 

GA to determine the optimal duration and cost of different work packages affected by 

various influencing factors and project constraints. Hyun et al. (2021), Rashid et al. (2020), 

and Al-Bazi and Dawood (2010) developed models to optimise the worker allocation in 

manufacturing for construction. The first one sought to provide an optimal solution in the 

case of various objectives (for example, limited number of workers, or pre-determined 

output), while the other two did the optimisation with regards to a single objective, production 

time and costs respectively (Al-Bazi and Dawood, 2010; Rashid et al., 2020; Hyun et al., 

2021). There are models where GA is combined with another method to depict the system 

more accurately. For example, Rashid et al. (2020) and Al-Bazi and Dawood (2010) used 

discrete-event simulation to model the process of modular unit and precast concrete 

element production, respectively. Mahdavian and Shojaei (2020) also combined GA and 

discrete-event simulation to optimise resource allocation. The GA component provided the 

set of available resources based on cost information, while the start and completion times 

were determined by the simulation part (Mahdavian and Shojaei, 2020).     
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2.3.2.6 Expert systems (ES) 

At the core of expert systems (ES) is a logically structured knowledge base (Olomolaiye et 

al., 1998). This library contains data and experience from past projects and rules of thumb 

(Boussabaine, 2001a). The users need to answer a series of questions, which were 

determined based on an understanding of how decisions are made by practitioners 

(Olomolaiye et al., 1998). Moselhi and Nicholas (1990) proposed an expert system for 

scheduling and planning of building construction projects. Its duration modifier module 

added the influence of different factors, such as overtime, to the unimpacted duration to 

gain a more realistic one. The system could be used, for example, for analysing how the 

changes in the project environment would affect the project duration and costs (Moselhi and 

Nicholas, 1990). Rao et al. (2005) developed an expert system, which can systematically 

analyse productivity and offer possible corrective actions. 

 

2.3.2.7 Multi-criteria decision analysis methods (MCDA) 

Certain methods are more suited for productivity studies conducted at the industry level. 

Multi-criteria decision analysis methods are applied to aid the selection of the most 

appropriate alternative out of numerous options based on subjective criteria, where the 

variants are often described by uncertain and inaccurate data (Wątróbski et al., 2019).  

The Decision Making Trial and Evaluation Laboratory (DEMATEL) is an MCDA method that 

can analyse the direct and indirect connections between system elements (Nasirzadeh, 

Rostamnezhad, et al., 2020). This method does not assume that the factors are 

independent of each other (Chaturvedi et al., 2018). Chaturvedi et al. (2018) used 

DEMATEL to assess labour productivity in the Indian construction industry based on the 

cause and effect relationships of the influencing factors. They found safety to be the most 

important factor (Chaturvedi et al., 2018). Nasirzadeh et al. (2020) applied DEMATEL for a 

similar purpose in the case of Australian construction projects. Level of skill and experience 

was ranked first among the most important factors (Nasirzadeh, Rostamnezhad, et al., 

2020). Shahpari et al. (2020) combined DEMATEL with other MCDA methods (Analytic 

Network Process and Technique for Order of Preference by Similarity to Ideal Solution) to 

assess the productivity of prefabricated and in-situ construction systems in Iran. 

Management and planning were found to be of greatest importance (Shahpari et al., 2020). 

Data envelopment analysis (DEA) is a non-parametric method used to determine a 

decision-making unit’s (for example, a country’s) relative efficiency (Hu and Liu, 2018). The 

indicators exist in a multi-input multi-output system (Li et al., 2019). Hu and Liu (2018) 

applied DEA to measure the overall performance of the construction industry in different 

regions of China. With the help of this method, Li et al. (2019) measured the change in 

workforce productivity in various regions of the USA between 2006 and 2016.  
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Stochastic frontier analysis (SFA) is used for the same purpose as DEA; however, this is a 

parametric method (Nazarko and Chodakowska, 2017). De Jorge Moreno et al. (2016) 

developed three models based on SFA to study the technical efficiency of the Spanish 

construction industry. The skills of the workers were found to be an important factor (De 

Jorge Moreno et al., 2016). Nazarko and Chodakowska (2017) compared the results of DEA 

and SFA models when measuring technical efficiency in EU countries. They concluded that 

the higher labour costs characteristic of old EU countries does not mean higher efficiency 

as well (Nazarko and Chodakowska, 2017).      

 

2.4 Machine learning (ML) 

The relationship between the influencing factors and the productivity rate, and especially 

the factors’ combined effects are complex, thus making modelling challenging (Chao and 

Skibniewski, 1994). Owing to this, productivity studies can benefit from the application of 

machine learning methods. This section gives an overview of the most widely used options. 

ML systems are capable of making predictions on new data inputs based on what they have 

learnt from previous input data (Di Franco and Santurro, 2020). In this, they are similar to 

some statistical methods, regression, for instance. However, while in the case of regression 

analysis, the function describing the relationship between the variables is assumed and the 

coefficients are determined through iteration, in the case of ML, this function is 

approximated by the ML system (Boussabaine and Kirkham, 2008). 

 

2.4.1 Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) have been used in construction studies since the late 

1980s (Flood and Kartam, 1994a; Adeli, 2001). There is a wide range of applications in the 

field of construction management because ANNs can be trained to learn from even 

imperfect datasets, and provide quick and generalised solutions to a problem (Flood and 

Kartam, 1994a). ANNs can be used for modelling problems in which functional relationships 

between dependent and independent variables are subject to uncertainty, not understood, 

or may vary with time (Di Franco and Santurro, 2020). 

Moselhi and Khan (2012) studied concrete formwork installation productivity by using ANN, 

fuzzy subtractive clustering, and stepwise regression analysis and comparing the results. 

Significance ranking of the influencing factors was performed, as well. Temperature and the 

type of the structure ranked highest (Moselhi and Khan, 2012). The same dataset and input 

variables were used by Nasirzadeh et al. (2020) and Golnaraghi et al. (2019). The former 

aimed to use ANN to gain prediction intervals for labour productivity, while the latter 

compared the results obtained with the help of four different network configurations 

(Golnaraghi et al., 2019; Nasirzadeh, Kabir, et al., 2020). The output of the ANN by Portas 
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and AbouRizk (1997) was also an interval (referred to as a zone) containing a small range 

of productivity values for concrete formwork operations.  

El-Gohary et al. (2017) sought to gain more accurate productivity rates for concrete works. 

Tsehayae and Robinson Fayek (2016) analysed the productivity influencing factors for the 

same trade. Badawy et al. (2021) created an ANN model to be able to predict the 

productivity rate of reinforcing works based on physical attributes of the works (for example, 

the diameter of the rebar).  

Oral and Oral (2010) applied self-organising maps to investigate the effects of various 

influencing factors and to forecast construction productivity in the case of concrete works, 

formwork installation, and reinforcing works. Oral et al. (2016) compared the application of 

self-organising maps and artificial bee colony to predict productivity rates for ceramic tiling 

works. Heravi and Eslamdoost (2015) analysed the factors affecting productivity for power 

plant projects. They found supervision, proper coordination, and effective communication 

to be the most important ones. Moselhi et al. (2005) also investigated projects as a whole, 

rather than specific trades, and developed a model to understand the effect of change 

orders on labour productivity. Fan et al. (2021) also used physical characteristics 

complemented with cost data to attempt to forecast the project duration. 

 

2.4.2 Hybrid ANN models 

To enhance the capabilities of an ANN approach, it is possible to use it combined with other 

methods, thus creating a hybrid model. One option is to complement ANNs with 

construction simulation. Song and AbouRizk (2008) modelled steel drafting and fabrication 

by embedding ANNs into their discrete-event simulation model to estimate the duration of 

the individual activities. To provide accurate productivity estimates for earthworks, Chao 

and Skibniewski (1994) generated the activity durations fed into the ANN model with the 

help of discrete-event simulation.  

ANN-FL hybrid models are referred to as neurofuzzy (Boussabaine, 2001a). FL is suitable 

for modelling subjective variables in the ANN models. The aim of Mirahadi and Zayed’s 

(2016) study was to gain more accurate productivity rates for concrete works. To this end, 

they used both crisp and fuzzy input variables, which were fed into the model through 

simulation. The output layer was also fuzzy. Moreover, a genetic algorithm-based 

optimisation was used for the fine-tuning of the model (Mirahadi and Zayed, 2016). The 

output of the ANN model for concrete formwork operations by Portas and AbouRizk (1997) 

was an interval (referred to as a zone) containing a small range of productivity values 

measured on a fuzzy scale. Boussabaine (2001b) developed a neurofuzzy model to be able 

to better estimate project durations based on the selected project characteristics used as 

fuzzy input variables. Omar and Robinson Fayek’s (2016) fuzzy neural network models 

were created to identify and quantify the relationships between the functional and 
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behavioural competencies (i.e., knowledge and skills stemming from the organisations and 

the individuals) and the projects’ key performance indicators.    

 

2.4.3 Random forest (RF) 

Random forest is a nonparametric, nonlinear regression algorithm, which creates a number 

of classification and regression trees from a random sample of the original dataset (Liu et 

al., 2018; Momade et al., 2020; Awada et al., 2021). The output of RF is determined based 

on combining the output of these, individual decision trees (Momade et al., 2020). Liu et al. 

(2018) studied the effects of meteorological factors on the productivity of scaffolding works. 

They compared a generalised additive model and an RF model, and found that RF is better 

suited for the task and is capable of further analysis of the combined impact of the 

environmental factors (Liu et al., 2018). Momade et al. (2020) investigated the effects of 

various factors on the productivity of construction operatives working on residential projects. 

They compared an RF model with a support vector machine (SVM) one. SVM is also a 

nonlinear machine learning method, which can be used for regression and classification 

problems. In this study, the workers’ salary was used as a productivity measure. Operative 

characteristics, such as experience, training, and skills, were found to have the greatest 

impact on productivity. The SVM model provided more accurate labour productivity 

predictions than the RF model (Momade et al., 2020). 

 

2.5 Simulation 

2.5.1 Basic simulation methods 

One of the basic simulation methods available is discrete-event simulation (DES), which 

focuses on, and models the process itself. DES is based on the concept of entities and 

resources to describe their flow and sharing across a system. Entities are passive objects 

(no interaction or characteristics are attached to them) and they travel through the workflow 

where they are processed, delayed, queued, seized, and divided. The first notable 

construction simulation tool using DES was Halpin’s CYCLic Operations Network 

(CYCLONE) in 1973, which was intended to be a general-purpose simulation system 

(AbouRizk et al., 2011).  Martinez (2010) has described a methodology for conducting DES 

and pointed out the possible problems one may encounter when modelling, which could put 

the model’s validity in jeopardy. Activity durations in DES models can be described by 

probability distribution functions like the ones used in Program Evaluation and Review 

Technique (PERT). Law (2015) attempted to collect all the available functions (ranging from 

uniform to Weibull, including the Johnson and Pearson systems) with their properties and 

explained their usage in the case of simulation. AbouRizk and Halpin (1992, p. 537) 

suggested that flexible functions were needed due to the ‘diversified nature of construction 
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duration data’, and advised using the beta function because of its familiarity in the 

construction field. Hajdu and Bokor (2016) argued that a careful three-point estimation was 

more important than the type of distribution function selected. Monte Carlo simulations 

performed on hypothetical and real-life projects showed that a 10% difference in the three-

point estimation could cause greater deviations than the chosen distributions (Hajdu and 

Bokor, 2016). Ahmed et al. (2021) used DES to model concurrent construction operations 

with resource constraints to find optimal workflow and resource allocation for minimal 

duration. Kim et al. (2021) applied DES to obtain the duration of in-situ concrete works 

taking gang size and spatial conflicts into account.  

Another basic simulation method is system dynamics (SD), as developed by Forrester 

(1961). SD is a top-down method that concentrates on the various influencing factors and 

the relationships among them to show the entire system’s workings and behaviour with 

feedback loops. SD can be used for both qualitative and quantitative modelling: the former 

focuses on creating a causal loop diagram (balancing and reinforcing relationships), while 

the latter determines stocks and flows and expresses the links with equations (Kunc, 2017). 

SD is a model that works with aggregates, that is, the items in the same stock are 

considered equal, and the system is defined as a set of structural dependencies. 

Mawdesley and Al-Jibouri (2009) used SD to determine which areas should be improved 

by management to increase productivity. The model contained planning, control, motivation, 

safety, and disruptions as the most significant factors. Several strategies were tested, and 

it was found that the first two needed the management’s particular attention (Mawdesley 

and Al‐Jibouri, 2009). Soewin and Chinda (2020) applied SD to determine the construction 

performance index and maturity level of construction companies based on 57 factors 

grouped into 10 major categories. They found that besides the traditional measures of time, 

cost, and quality, the internal stakeholders group – containing factors such as labour 

productivity, competence, and teamwork – was also key to achieving higher levels of 

maturity (Soewin and Chinda, 2020). With the help of SD, Al-Kofahi et al. (2020) studied 

how and to what extent owner-liable change orders affect labour productivity. 

In contrast to SD, agent-based modelling (ABM) has a bottom-up approach – there is no 

global system behaviour. The system’s behaviour emerges from how individual, 

heterogeneous agents interact with each other and their environment based on defined 

rules (Watkins et al., 2009). Siebers et al. (2010) argue that ABM had an advantage over 

DES, in cases where the focus is not on the process but on how the individual agents, who 

can learn and adapt, affect the system. Son et al. (2015) emphasise similar positive 

properties through examples of project teams in large-scale construction projects. They 

recommend ABM for modelling, for instance, the international construction market with 

countries and firms as agents (Son et al., 2015). Watkins et al. (2009) used ABM to 

determine how site congestion affects productivity with two agent types being defined: 

workers (with variables such as skill level) and activities. Dabirian et al. (2021) built on this 
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model to quantify the productivity loss caused by site congestion. Hsu et al. (2016) used 

ABM to assess team member selection models. In their research, the agents were the 

workers with attributes such as experience and skills. It was concluded that 

interdependence-based selection is preferable to skill-based assignment (Hsu et al., 2016). 

With the help of ABM, Kiomjian et al. (2020) studied how gang composition and project 

scheduling affect knowledge sharing, which in turn has an impact on the activity duration. 

Higher levels of knowledge sharing was found in the case of more diverse gangs, which 

could lead to greater productivity gains (Kiomjian et al., 2020).    

 

2.5.2 Hybrid simulation approaches 

The approaches described above are often used individually but can also be applied in 

combination. A benefit of the combined approach is to use the various advantages of each 

method and to balance its shortcomings. The most suitable approach should be selected 

for each component of the model and, depending on the question that needs to be 

answered, such combinations will provide more accurate representations of reality 

(Borshchev and Filippov, 2004; Borshchev, 2013). Furthermore, the three basic simulation 

methods can be mixed with other methods, such as Artificial Neural Networks (ANNs) or 

Fuzzy Logic (FL) (Balaban et al., 2014), which can also be considered hybrid approaches 

(AbouRizk, 2010; Nojedehi and Nasirzadeh, 2017). 

Fahrland (1970) suggested the combination of DES and SD to create improved, more 

realistic, and efficient models with many possible applications ranging from aerospace 

missions to nuclear power plant start-ups. While DES concentrates on the process, and 

deals with issues at the operational level, SD is suitable for modelling at the strategic level; 

thus, complementing each other (Peña-Mora et al., 2008). With the help of combined DES-

SD systems, it is possible to coordinate managerial and operational decisions to increase 

productivity (Peña-Mora et al., 2008; Alvanchi et al., 2011). In the interest of obtaining more 

realistic project duration data, Alzraiee et al. (2015) complemented DES with SD, as well. 

The latter was used to take the influencing factors (for instance, weather and overtime) into 

consideration (Alzraiee et al., 2015).   

DES can also be combined with ABM. In operational research, instead of pure ABM, often 

a hybrid model is used where the entities of the DES are active, ABM agents (Siebers et 

al., 2010). Shehab et al. (2020) paired DES with ABM in a hybrid simulation model, where 

the DES component modelled the construction operation, and the ABM part modelled the  

construction gangs.  

Lättilä et al. (2010) urged that researchers should combine SD with ABM to combine the 

positive features of both approaches. They also mentioned that both systems could be used 

to model the same problem and then the results could be compared (Lättilä et al., 2010). 

Nasirzadeh et al. (2018) proposed an integrated SD-ABM simulation approach to model 
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construction workers’ safety behaviour and its effect on the project duration. In the ABM 

model, contractors were chosen as agents, and each of them had their SD models showing 

the influencing factors. There was a constant flow of information between the models 

(Nasirzadeh et al., 2018). Khanzadi et al. (2018) also used an integrated SD-ABM 

simulation approach to see how site congestion affects productivity. 

Additionally, Borshchev (2013) provided an example for combining all three basic methods 

where DES is used to model the supply chain process, SD describes the market, and agents 

represent the participants.  

Raoufi et al. (2016) provided an extensive overview of the combinations of FL with DES, 

SD and ABM in construction, showing the advantages of integrating FL into the basic 

methods and giving advice on the appropriate choice of a hybrid technique. AbouRizk and 

Sawhney (1993) developed the Subjective and Interactive Duration Estimation System 

(SIDES) with the aim of determining more realistic beta distribution functions for activity 

durations in DES with the help of FL. The users of the application had to define the two 

endpoints of the function; however, fitting was based on the selected influencing factors 

expressed in linguistic terms (AbouRizk and Sawhney, 1993). Zhang et al. (2005) also 

suggest the application of FL in DES in cases when there is no field data to use. Even when 

there is, FL could be used to incorporate ‘vagueness, imprecision and subjectivity’ (Zhang 

et al., 2005, p. 727).  

Nojedehi and Nasirzadeh (2017) also combined SD with FL, while the former part of the 

model contained the most important factors influencing labour productivity; the latter 

component was used to express the effect of those factors that could not have been done 

with crisp values. With the help of the model, possible solutions for improving productivity 

were tested to contribute to better managerial decisions (Nojedehi and Nasirzadeh, 2017). 

Raoufi and Robinson Fayek (2015) combined FL with ABM to investigate how gang 

performance is affected by the workers’ personality and the interactions between the 

workers and their environment. Two layers of agents were defined: workers and gangs. The 

‘what-if’ rules of agent behaviour were expressed in linguistic terms, which were translated 

using FL (Raoufi and Robinson Fayek, 2015). 

 

2.6 Productivity studies of block and bricklaying operations 

The fundamental principles of masonry works have not changed for millennia (Gilbreth, 

1909). Bricks and brickwork were discussed in various collections of the architectural 

knowledge of the given era, for example, in Vitruvius’ Ten Books on Architecture from the 

1st century BC or in Yingzao Fashi from early 12th century China (Vitruvius, 1914; Chong, 

2006). In the beginning of the 20th century, Gilbreth (1909) published a book on bricklaying, 

which contained a motion study. All the movements of typical bricklaying operations were 

listed, and – in order to increase productivity – the sequences were optimised by omitting 
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the unnecessary ones (Gilbreth, 1909). The tools used by bricklayers today (right side of 

Figure 2.1) are very similar or the same as the ones that can be seen in Gilbreth’s book (left 

side of Figure 2.1).   

 

 
 

  

Figure 2.1 Top: Trowel, Bottom: Brick clamp (Left: Gilbreth (1909, pp. 8&118), Right: Photos taken 

by Orsolya Bokor in 2019) 

 

In the post-war era, productivity became important as the number of construction projects 

increased to a great extent. For example, the Building Research Station conducted studies 

of masonry works. One of these compared the productivity of laying bricks and blocks of 

various sizes and analysed productive and non-productive times (Kinniburgh and Vallance, 

1948). Another one also mentioned that the size of the unit was important with regards to 

productivity, alongside motivation, the technique of laying, and the organisation of the works 

on site (Forbes and Mayer, 1968). Based on on-site observations and video analysis, 

Whitehead (1973) proposed improvements to the bricklaying technique to increase 

productivity. 

There have been several studies modelling bricklaying productivity. Some investigated the 

effects of a few factors, while others included a number of factors. Table 2.4 contains the 

most common factors from the selected studies. These factors are divided into categories 

called design, gang, management, site, and external. In these studies, various methods 

were used to analyse the impact of the chosen factors on productivity. 
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Thomas and Yiakoumis (1987) proposed the application of the factor model, which focused 

on gang-level productivity. The effects of the influencing factors were quantified with the 

help of regression analyses. Based on these and the learning curve effect, productivity 

curves could be defined, and then used to forecast actual productivity. The goal was to be 

able to explain the variability of daily productivity. The model was developed as a general 

one, not specifically for masonry works; however, block laying was one of the activities 

observed for data collection. The paper showed an example of the application of the model 

to determine the effects of changes in temperature and relative humidity (Thomas and 

Yiakoumis, 1987). Later, the factor model was further developed.  

Sanders and Thomas (1991) compiled a list of factors (concentrating mostly on design-

related ones) influencing masonry productivity. With the help of the variance analysis, they 

concluded that design requirement factors – for example, the number of cuts – had 

considerable impact on productivity (Sanders and Thomas, 1991). A regression model was 

created based on these factors with gang size added to them (Sanders and Thomas, 1993). 

The calculated coefficients were used in Thomas and Sakarcan’s (1994) productivity 

forecasts. Their conceptual factor model contained more factors than Sanders and Thomas’ 

(1991) list. However, they argued that predictions about productivity can only be made 

based on factors that can be predicted in advance. These factors are related to the work to 

be performed, while the work environment cannot be predicted (Thomas and Sakarcan, 

1994).   

Thomas and Završki (1999) proposed a work content scale for masonry projects. This 

essentially described the difficulty of the works on the project level. The 1 (the least complex 

design) to 5 (the most complex design) scale was based on the number of cuts, openings, 

and non-perpendicular corners, and the extent of ornamental work (Thomas and Završki, 

1999). Since daily productivity was measured in all of Thomas’ above-mentioned studies, 

wall or course difficulty could not be used. 

Sweis et al. (2009) further developed Thomas and Sakarcan’s (1994) factor model by 

adding a group of factors, called indirect causes, which included, for example, acceleration. 

They used the complexity scale of Thomas and Završki (1999) to describe the difficulty of 

the projects. Their objective was to determine a baseline productivity rate based on the work 

to be done factors, and to calculate the normal variation, which happens due to the work 

environment factors. They recommended management action when the variation was 

abnormal. Normal variation was determined with the help of multiple regression analysis, 

where the work environment factors were binary independent variables (Sweis et al., 2009). 

In another study, Sweis et al. (2008) compared baseline productivity rates of masonry works 

in the US, UK, and Jordan based on data collected on project sites in these countries. Here 

they also used Thomas and Završki’s (1999) difficulty scale to characterise the projects. 

They attributed the differences between baseline values to a function of construction 

methods, materials, site management, sociological and cultural factors, and craft skills. 
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Training, work ethic, and motivation were included in the latter. They found that the 

productivity of skilled bricklayers was similar in all three countries; however, due to manual 

material handling practice in Jordan, a great number of unskilled labourers had to be 

employed on the sites causing variations in baseline productivity (Sweis et al., 2008).  

Thomas and Sudhakumar (2014) used multiple regression analysis to model masonry 

productivity. One of the selected influencing factors was work content from Thomas and 

Završki’s (1999) model, which was found to have significant effect on productivity. Apart 

from a couple of gang-related ones, the majority of the factors considered were ones that 

are unknown at the time of pre-construction planning. 

Hendrickson et al. (1987) developed an expert system called MASON to estimate block and 

bricklaying activity durations. First, the maximum productivity rate was determined, then this 

was adjusted, decreased based on the answers given to the questions about the selected 

factors. The majority of the factors considered were regarding the work to be performed. 

Gang-related questions were concerned with gang composition and whether the operatives 

were union members (Hendrickson et al., 1987). 

Models based on machine learning were also developed. Gerek et al. (2015) created two 

artificial neural network models to study the productivity of bricklaying gangs. The chosen 

factors were mostly gang (for example, experience) and management-related with a couple 

ones regarding the design of the walls. By ranking the factors, they found that brick type 

and working time had the greatest effect on productivity (Gerek et al., 2015). Aswed (2016) 

developed an artificial neural network model, as well. Factors were selected from all 

categories shown in Table 2.4; however, most of them were gang and design-related. 

According to the sensitivity analysis performed, the ones with the greatest impact were from 

these categories (Aswed, 2016). Al-Somaydaii (2016) used a support vector machine 

learning algorithm to investigate bricklaying productivity. The majority of the factors were 

either gang or site-related, however, there were no design-related ones (Al-Somaydaii, 

2016).  

Karthik and Kameswara Rao (2019) conducted a survey research to find the most important 

factors influencing bricklaying productivity. Their study included factors from every category 

shown in Table 2.4; however, there were very few design-related ones. The relative 

importance indices showed gang-related factors to be the most important category with 

experience and skills being first in the overall ranking (Karthik and Kameswara Rao, 2019). 

Horner and Talhouni (1995) reported that daily productivity of bricklaying gangs could be 

twice as much one day as the day before, and even five times as much on one site as on 

another. They divided the factors contributing to these variations into three categories: 

people, project and site-related. In the first group were the worker’s skill, speed, and the 

quality of their work. Problems can be overcome fast with good skills, and good quality work 

can make rework unnecessary. It was emphasised that the selection and training of the 

operatives is crucial (Horner and Talhouni, 1995).  
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Despite attempts at mechanisation, masonry works remain highly labour-intensive. Mortlock 

and Whitehead (1970) devoted a section in their study to introduce several bricklaying 

machines from various countries, such as the US, the UK, and the Netherlands. There are 

examples for experimenting with bricklaying robots at universities (Pritschow et al., 1996; 

Aguiar and Behdinan, 2015). However, industrial application has only just begun 

(Melenbrink et al., 2020). Owing to this and the aforementioned shortage of skilled labour, 

it is crucial to investigate the effects of gang-related, especially worker-related, factors on 

productivity. For instance, experience, health, and good relationships between the workers 

appeared in Aswed’s (2016) and Al-Somaydaii’s (2016) studies. The following examples 

concentrate on the impact of worker-related factors. 

Olomolaiye (1990) studied the effect of bricklayers’ motivation on their productivity. Besides 

financial incentives, several other factors were included among the motivating variables, 

such as good relationships among the members of the bricklaying gangs. It was found that 

motivation did not influence the productivity rate; however, it did have an effect on the 

percentage of productive time. It was argued that skills, which are the product of natural 

ability, training, and experience, and are reflected in speed, could affect productivity 

(Olomolaiye, 1990). Therefore, Olomolaiye et al. (1996) investigated how skill – defined as 

a function of time it takes to lay a brick – affected the output of bricklayers. Based on the 

results of the simulation, the critical activities of the bricklaying process were found with the 

actual laying the brick task having the greatest influence on the output. Different gang sizes 

were also examined, and the 2 bricklayer+1 labourer configuration was found to be optimal 

(Olomolaiye et al., 1996).  

Florez (2017) used a different definition for skill: the ability to perform a task well. This model 

was developed to match the walls with masons with appropriate skills, while aiming for 

minimum activity durations and keeping the costs within budget. The walls were divided into 

easy and difficult categories. Furthermore, the relationships between the members of the 

gang were also considered (Florez, 2017). This was further explored by Florez et al. (2020), 

who found that personality characteristics could affect productivity, that the members of the 

gang should be compatible.     

The factors selected for this study have a gray background in Table 2.4. As the research 

project concentrates on pre-construction planning, the values of the chosen factors need to 

be known in advance, hence they are from the design and gang-related categories. Difficulty 

of works and brick type belong to the former, while skills, which are further broken down 

into sub-factors, and experience are in the latter group. Section 4.1 explains the selection 

of the factors in detail and also provides the definitions used in this study.   
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Factor 

cat. 

Factor Thomas 

and 

Yiakoumis 

(1987) 

Sanders 

and 

Thomas 

(1991) 

Thomas 

and 

Sakarcan 

(1994) 

Sweis 

et al. 

(2009) 

Thomas and 

Sudhakumar 

(2014) 

Gerek 

et al. 

(2015) 

Karthik and  

Kameswara 

Rao (2019) 

Aswed 

(2016) 

Al-

Somaydaii 

(2016) 

Horner 

and 

Talhouni 

(1995) 

Hendricksen 

et al. (1987) 

D 

E 

S 

I 

G 

N 

Buildability            

Variability of 

design 
         

 
 

Structure            

Building 

element 
         

 
 

Size            

Specifications            

Design 

features 
         

 
 

Finish            

Difficulty of 

works 
           

Brick/block 

type 
         

 
 

Brick/block 

size 
         

 
 
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Factor 

cat. 

Factor Thomas 

and 

Yiakoumis 

(1987) 

Sanders 

and 

Thomas 

(1991) 

Thomas 

and 

Sakarcan 

(1994) 

Sweis 

et al. 

(2009) 

Thomas and 

Sudhakumar 

(2014) 

Gerek 

et al. 

(2015) 

Karthik and  

Kameswara 

Rao (2019) 

Aswed 

(2016) 

Al-

Somaydaii 

(2016) 

Horner 

and 

Talhouni 

(1995) 

Hendricksen 

et al. (1987) 

Mortar type            

Design 

changes 
         

 
 

G 

A 

N 

G 

 

Gang size            

Gang 

composition 
         

 
 

Skills            

Age            

Experience            

Execution            

Intra-gang 

relationships 
         

 
 

Physical, 

mental health 
         

 
 

Union            

Motivation            

Absenteeism            
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Factor 

cat. 

Factor Thomas 

and 

Yiakoumis 

(1987) 

Sanders 

and 

Thomas 

(1991) 

Thomas 

and 

Sakarcan 

(1994) 

Sweis 

et al. 

(2009) 

Thomas and 

Sudhakumar 

(2014) 

Gerek 

et al. 

(2015) 

Karthik and  

Kameswara 

Rao (2019) 

Aswed 

(2016) 

Al-

Somaydaii 

(2016) 

Horner 

and 

Talhouni 

(1995) 

Hendricksen 

et al. (1987) 

M 

A 

N 

A 

G 

E 

M 

E 

N 

T 

Management 

methods 
         

 
 

Supervision            

Work 

schedule 
         

 
 

Shift work            

Working 

days, hours 
         

 
 

Breaktime            

Overtime            

Acceleration            

Manning level            

Wage type1            

Wage            

             

 
1 Wage type refers to the way the workers are contracted (direct labour, subcontracted) and paid (lump sum, weekly, daily) 
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Factor 

cat. 

Factor Thomas 

and 

Yiakoumis 

(1987) 

Sanders 

and 

Thomas 

(1991) 

Thomas 

and 

Sakarcan 

(1994) 

Sweis 

et al. 

(2009) 

Thomas and 

Sudhakumar 

(2014) 

Gerek 

et al. 

(2015) 

Karthik and  

Kameswara 

Rao (2019) 

Aswed 

(2016) 

Al-

Somaydaii 

(2016) 

Horner 

and 

Talhouni 

(1995) 

Hendricksen 

et al. (1987) 

S 

I 

T 

E 

Site 

organisation 
         

 
 

Congestion            

Disruptions            

Rework            

Equipment            

Tools            

Material 

availability 
         

 
 

Health and 

safety 
         

 
 

Site security            

EXT. Weather            
Table 2.4 Influencing factors in bricklaying productivity models (cat.=category, EXT.=external) 
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2.7 Chapter summary 

To give context to the research project on construction labour productivity, this chapter 

provided an overview of construction productivity concepts and the skill shortage in the UK. 

The bulk of the chapter discussed productivity studies. First, research efforts on collecting 

and categorising productivity influencing factors were introduced. Then the various methods 

– such as statistical analysis, fuzzy logic, genetic algorithms, and expert systems – used for 

modelling productivity were presented complete with examples for their application. 

Machine learning and simulation methods were discussed in more detail as these were 

selected for modelling bricklaying productivity in this research project. Artificial neural 

networks, a machine learning approach, were chosen for one component of the model 

because they can handle complexity and uncertainty characterising construction, learn from 

even imperfect input data, and make predictions – in this case, for productivity – for new 

input data. The use of ANNs will be discussed in detail in Chapter 5. For the other 

component of the model, discrete-event simulation was selected, which is suitable for 

modelling a construction process, providing the process duration and information on 

resource usage and allocation. Creating hybrid models – as shown by the examples – is 

beneficial because by combining the methods, their advantages are also combined, while 

their shortcomings can be balanced out. Chapter 7 will introduce the DES component and 

show the connection between the model components. The final section of this chapter 

provided a comprehensive discussion of the published bricklaying productivity studies, 

complete with a table listing and categorising the productivity influencing factors selected 

for these studies. The factors chosen for this research project will be discussed in Chapter 

4.   
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

To be able to demonstrate how the aim and objectives of the research project were 

achieved, the steps of the research process need to be articulated. The components of the 

research project are shown in Figure 3.1. Details are listed in the middle row, while the 

output of each step can be seen in the bottom row. 

 

 
Figure 3.1 Steps of the research project 

 

It is important to choose the appropriate methods to achieve the objectives of the research. 

However, these methods do not exist in a vacuum, they all have theoretical underpinnings, 

which should also be considered. Dealing with theory is critical for two reasons: one, it 

provides the foundation for the research, the rules by which it is conducted, and two, theory 

facilitates the understanding of the findings (Crotty, 1998; Bryman, 2016). Today there is a 

variety of options for conducting and interpreting research, there is not one single scientific 

method (Fellows and Liu, 2015). Therefore, the appropriate theoretical background has to 

be chosen and made explicit in the research. 
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This chapter aims to introduce the theoretical considerations behind the research as well 

as how it was conducted in practice.  

 

3.2 Research decisions 

The four basic elements of the research process according to Crotty (1998) can be seen in 

Figure 3.2. Method (e.g., non-participant observations) is the technique applied for 

collecting and analysing data. Methodology (e.g., survey research) is the design or process 

explaining the selection of methods, and the link between them and the outcomes. The 

philosophical view (e.g., positivism) affecting the methodology and giving context to the 

research process is referred to as theoretical perspective. The way that knowledge is 

understood and explained belongs in the element of epistemology (Crotty, 1998).    

 

 
Figure 3.2 Four elements of research (Adapted from (Crotty, 1998)) 

 

Three of these four elements in Crotty’s (1998) model also appear in Creswell and 

Creswell’s (2018) framework. In this case, the theoretical perspective is called philosophical 

worldview, while methodology is labelled as designs. Using this framework, the research 

approach emerges from the interaction of the three components (Creswell and Creswell, 

2018). 

 

 
Figure 3.3 Research approach (Adapted from (Creswell and Creswell, 2018)) 

 

Saunders et al. (2016) illustrated the questions that need to be answered when deciding 

about how to conduct a research project with the metaphor of a ‘research onion’ (see Figure 

3.4). The techniques used for data collection and analysis are often the only issues 
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considered; however, those only comprise the centre of the onion, and the outer layers are 

also important (Saunders et al., 2016). 

 

 
Figure 3.4 Research onion (Adapted from (Saunders et al., 2016)) 

 

The research onion is a useful tool because its layers frame the decisions about the 

research. Therefore, the following sections are structured using these layers to explain and 

justify the choices made in this research project, which are shown in blue frames in Figure 

3.4. 

 

3.2.1 Research philosophy 

As a result of the research project, new knowledge is developed. In the course of that, 

several assumptions have to be made. Research philosophy deals with the system of these 

assumptions (Saunders et al., 2016). Crotty (1998) calls this element theoretical 

perspective, while it appears as philosophical worldview in Creswell and Creswell’s (2018) 

framework. Bryman (2016) refers to it as an epistemological consideration. 

Saunders et al. (2016) explain the various philosophies using three different types of 

research assumptions made during the research. The first one is ontology, which is 

concerned with the nature of reality. Epistemology refers to what kind of knowledge can be 

considered acceptable. Similar to business and management in their case, construction 

management is also multidisciplinary, hence, for example, various types of data can be 

accepted as legitimate. Lastly, axiology refers to how values are dealt with, how the values 

of the researcher and those of the participants affect the research (Saunders et al., 2016). 

The aforementioned assumptions can be placed on a scale going from objectivism to 

subjectivism (Saunders et al., 2016). In Crotty’s (1998) model this is the epistemology 
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element, while Bryman (2016) discusses them under ontological considerations. 

Objectivism views everything as tangible objects, which exist independently of experiences 

or interpretations (Bryman, 2016; Saunders et al., 2016). There is only one true reality, 

which can be observed and measured by the researchers, who remain detached and 

exclude their own values from their research (Saunders et al., 2016). Constructionism 

rejects the idea of universal truth, and believes that the same phenomenon can be 

interpreted in various ways by different researchers (Crotty, 1998). In the case of 

subjectivism, the meaning assigned to objects does not come from the interaction with the 

given object, it is rather a social construct (Crotty, 1998). The values of the researcher are 

integrated into the research (Saunders et al., 2016). 

Several research philosophies exist. The two most prominent and opposing ones are 

positivism and interpretivism (Crotty, 1998). The former is typically favoured within the 

natural sciences, while the latter, the social sciences (Bryman, 2016). Table 3.1 shows 

examples of several research philosophies, of which some will be explained further in the 

following sections. 
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(Saunders et al., 

2016) 
        

(Crotty, 1998)         

(Creswell and 

Creswell, 2018) 
        

(Bryman, 2016)         
Table 3.1 Research philosophies discussed in different sources 

 

Positivist research assumes that there are natural laws, which can be discovered by bias-

free observations carried out according to the scientific method (Crotty, 1998; Bryman, 

2016; Saunders et al., 2016). Positivism is deterministic, meaning that the outcomes are 

the result of causes (Creswell and Creswell, 2018). The data from the observations are 

used to verify a hypothesis formulated based on theory (Saunders et al., 2016). The 

collected data can also provide the basis for laws (Bryman, 2016). Fellows and Liu (2015) 

argue that while this philosophical stance can be applied for investigating the natural laws 

of the universe, usually, the observations taken and means of measurements can affect the 

object of the study. Saunders et al. (2016), therefore, mentions that – despite best efforts – 

it is practically impossible for the researcher to exclude their values from the research.  
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Similarly to positivism, realism also assumes that there is one true reality, which exists 

separately from the researchers’ interpretations (Bryman, 2016). Both Bryman (2016) and 

Saunders et al. (2016) differentiate between two forms of realism: empirical (or naïve) and 

critical realism. The former assumes that this reality can be understood by applying suitable 

methods (Bryman, 2016). Critical realists accept that there is a distinction between the 

object of their research and their descriptions, interpretations of it (Bryman, 2016; Saunders 

et al., 2016). Hypothetical entities, which are entailed in mechanisms and could not be 

observed but their effects can be, are also admissible for them (Bryman, 2016). Context, in 

which the cause and effect happens, is important for critical realists (Bryman, 2016). While 

positivists believe that their concepts of reality are direct reflections of reality, critical 

relativists assert that they are merely a way of knowing that reality (Bryman, 2016).    

Interpretivism, in short, is the opposite of positivism. It is based on the notion that people 

and the social world are fundamentally different from the objects of the positivist research 

in the natural sciences; therefore, a different research logic is required when investigating 

them (Bryman, 2016). Interpretivists collect the interpretations of their research subjects on 

the investigated issues. These are then interpreted by them, and then interpreted once 

again within the theory of the discipline (Bryman, 2016). Researchers do not attempt to 

detach themselves from their research, their beliefs and values are integrated into their 

studies (Saunders et al., 2016). Interpretivism is often a preferred philosophical stance in 

management research (Fellows and Liu, 2015; Saunders et al., 2016).  

Pragmatist researchers do not wish to subscribe to any of the offered extremes on the 

philosophical scale (Creswell and Creswell, 2018). They start with the research problem 

and would like to choose the methods most appropriate to meet the objectives of the 

research regardless of those being quantitative or qualitative (Feilzer, 2010; Saunders et 

al., 2016). Therefore, these studies are typically mixed-method ones (Creswell and 

Creswell, 2018). The objectives are usually contributions to practice (Saunders et al., 2016). 

Pragmatists accept uncertainty and acknowledge that the findings are not absolute but 

relative (Feilzer, 2010). To understand a phenomenon, practical consequences and 

empirical findings need to be studied (Johnson and Onwuegbuzie, 2004). 

As construction management draws from both the natural and the social sciences, different 

philosophical stances are adopted in research in this field (Dainty, 2008). Dainty (2008) 

argues that the paradigms of both sciences should be acceptable, and ideally they should 

be used in combination with each other.   

In light of this, pragmatism seems to be the appropriate choice. Due to this research project 

being in the field of construction management, thus in the middle between natural and social 

sciences, and because the output of it is intended to be a contribution to construction 

practice, the pragmatist philosophical stance was chosen.    
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3.2.2 Research approach 

The chosen philosophical perspective determines the choices in the inner layers of the 

research onion. Table 3.2 shows examples for typical combinations.    

 

Philosophy Approach Methodology 
Positivism Deduction Quantitative 

Interpretivism Induction Qualitative 

Pragmatism Deduction, induction, abduction Mixed 
Table 3.2. Philosophy-approach-methodology interaction (Based on (Saunders et al., 2016)) 

 

The second layer of Saunders et al.’s (2016) research onion shown in Figure 3.4 is the 

approach to theory development. Based on this, the research can be deductive, inductive, 

or abductive.  

The difference between induction and deduction is the sequence of the steps of the 

research process. In the case of deduction, first a hypothesis is formulated based on the 

literature review and theoretical considerations, then comes the data collection resulting in 

findings, which either confirm or refute this hypothesis (Bryman, 2016). If the hypothesis 

(general statement) proves to be correct, then the specific statements coming from the 

general one are also true (Fellows and Liu, 2015). However, deduction might not advance 

knowledge, as it works within the limits of the extant knowledge (Fellows and Liu, 2015).  

It is crucial that the conditions under which the hypothesis will likely to be confirmed are 

precisely specified and held constant throughout the data collection (Saunders et al., 2016). 

This way it is ensured that the changes in the dependent variable have indeed been caused 

by the changes of the selected independent variables (Saunders et al., 2016). It is also 

important that these variables are precisely defined and can be measured (Saunders et al., 

2016). The findings can only be generalised, if the sample size was sufficient (Saunders et 

al., 2016). Deduction is usually applied in natural sciences (Saunders et al., 2016).      

In the case of induction, the sequence is just the opposite of the one described for deduction 

(Bryman, 2016). Here the observations come first, and the general statement comes as a 

conclusion from the findings (Bryman, 2016). Induction can advance knowledge, as it can 

yield hypotheses and push the limits of extant knowledge (Fellows and Liu, 2015). Induction 

is typically used in the social sciences, where the goal is to better understand the problem 

(Saunders et al., 2016). The conditions are not strictly specified to allow room for new ones 

to be included (Saunders et al., 2016). The sample size is not so crucial as it is dictated by 

the chosen method and the richness of the data collected (Saunders et al., 2016).  

The third approach is abduction, which is the combination of deduction and induction 

(Saunders et al., 2016). The research starts as it would in the case of deduction; however, 

there are surprises among the findings making it necessary to formulate theories that can 
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possibly explain these unexpected results (Fellows and Liu, 2015). Alternatively, it can start 

as induction would, then after the conceptual framework is ready, it is tested by a new round 

of data collection (Saunders et al., 2016). Abduction allows for continuous movement 

between data and theory in order for new knowledge to be developed or existing theories 

to be modified (Saunders et al., 2016; Awuzie and McDermott, 2017). Axelrod (2007) 

argues that applying simulation in the research means that both deduction and induction 

are used. The modelling starts in a deductive way, with a theory; however, the output of the 

simulation model can be analysed inductively (Axelrod, 2007). 

Based on the above, the abductive approach was chosen for this research as both the 

existing literature and the observations informed formulating theory.  

 

3.2.3 Research design 

The next layer of the research onion in Figure 3.4 contains the possible methodological 

choices. Based on this, quantitative, qualitative, or mixed methods research design can be 

followed, where mixed methods refer to a combination of quantitative and qualitative 

methods. Figure 3.5 shows the methodological choices based on how many and what type 

of techniques are used for data collection and analysis. The selected methodology (simple 

mixed methods) is framed in blue.  

 
Figure 3.5 Methodological choices (Adapted from (Saunders et al., 2016)) 

 

If one procedure is applied for data collection and the subsequent analysis, then the study 

is called mono method. Within that quantitative and qualitative mono method studies are 

differentiated based on the type of the technique used. Another option is to apply multiple 

methods for data collection and analysis. If all chosen techniques are of one type, either 
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quantitative or qualitative, then the study is a multi-method one. If both quantitative and 

qualitative methods are applied within one study, then that is a mixed methods research 

(Saunders et al., 2016). 

Table 3.2 shows likely combinations of philosophies, approaches, and methodologies.   

Quantitative research is most likely positivist; however, it can be associated with realism, or 

pragmatism, as well (Saunders et al., 2016). It usually adopts a deductive approach, an 

objectivist ontology, and a value-free axiology (Fellows and Liu, 2015; Bryman, 2016). 

Quantitative studies typically deal with numbers, they measure quantifiable variables, and 

analyse them using a range of statistical techniques to prove a theory (Saunders et al., 

2016).  

Qualitative research is typically interpretivist; however, it can be realist or pragmatist as well 

(Saunders et al., 2016). These studies often start with an inductive approach, but may also 

use deduction in certain phases (Saunders et al., 2016). In qualitative studies, researchers 

focus on investigating social phenomena through the interpretations of the participants in 

order to better understand them (Bryman, 2016).  

Mixed methods research is the combination of the previously mentioned quantitative and 

qualitative research designs. Simple and complex types are differentiated based on how 

the combination is handled (Saunders et al., 2016). In the case of the former, the qualitative 

and quantitative components are running concurrently in one single data collection and 

corresponding analysis phase, whereas in the case of the latter, the components are 

sequential (Saunders et al., 2016). If there are two phases: one qualitative and one 

quantitative, the research design can be sequential exploratory or sequential explanatory 

depending on which comes first. If the qualitative phase precedes the quantitative one, the 

study has a sequential exploratory research design (Saunders et al., 2016). The research 

design can also be multi-phased (Saunders et al., 2016). Mixed methods research can be 

either realist or pragmatist (Saunders et al., 2016). It can adopt any approach, it can be 

deductive, inductive or abductive (Saunders et al., 2016).  

In this research project, both quantitative and qualitative methods are applied for data 

collection and analysis in one phase; therefore, concurrent mixed methods research design 

was chosen. 

 

3.2.4 Research strategy 

The fourth layer of the research onion shown in Figure 3.4 includes the strategies that can 

be chosen within the selected research design. The research strategy provides the 

methodological connection between the philosophical stance and the methods intended for 

data collection and analysis (Saunders et al., 2016). It is an action plan to achieve the 

research objectives and answer the research question (Crotty, 1998). 
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By selecting the research design, the set of possible research strategies is given. 

Experimental and Survey Research are examples of quantitative options, qualitative ones 

also include Survey Research as well as Action Research, Ethnography, and Grounded 

Theory, and Case Study Research frequently encompasses Mixed Methods Research 

Design  (Saunders et al., 2016). 

The decision of choosing the appropriate strategy is driven by the research questions and 

objectives; however, the available resources and access to potential data sources affect the 

selection as well (Saunders et al., 2016). 

The selected research strategy was Survey Research. Two survey methods were 

employed: structured observations and semi-structured interviews. 

 

3.2.5 Research time horizon 

A further choice within the research onion framework in Figure 3.4 concerns the time horizon 

of the research. Cross-sectional studies investigate a certain phenomenon at a particular 

point in time, while longitudinal studies focus on change (Saunders et al., 2016). According 

to Bryman (2016), cross-sectional and longitudinal designs are research methodologies 

with the former being another term for survey research and the latter being an extension of 

survey research. Saunders et al. (2016) argue that while cross-sectional studies are mostly 

associated with survey research, they can also use qualitative or mixed methods strategies. 

Due to this research project being interested in the effects of certain factors on productivity, 

but not how this effect may change over time, the study can be categorised as cross-

sectional.    

 

3.2.6 Research methods 

At the core of the research onion are the techniques and procedures used for data collection 

and analysis. The selected methods should be in line with the choices made in the outer 

layers of the research onion depicted in Figure 3.4. The structured observations and 

interviews used for data collection and the artificial neural networks, simulation and 

statistical analysis chosen for data analysis are described in the coming sections. 

 

3.3 Sampling 

In the majority of cases, it is not possible to collect and analyse data from every possible 

project, person, or case; a sample of them needs to be selected (Saunders et al., 2016). 

The findings of the research can only be generalised if the sample is representative of the 

population of interest (Bryman, 2016).  
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The two main types of sampling techniques are probability and non-probability sampling 

(Saunders et al., 2016). A possible categorisation of the different sampling options can be 

seen in Figure 3.6, where the selected technique (purposive) is framed in blue. 

 
Figure 3.6 Sampling techniques (Adapted from (Saunders et al., 2016)) 

 

In the case of probability sampling, the selection is random; the chance of being included is 

the same for every member of the population (Fellows and Liu, 2015). Sometimes this is 

not possible as the sampling frame cannot be constructed (Bryman, 2016). In such 

instances, a type of non-probability sampling can be chosen. Most of these techniques 

involve subjective judgement (Saunders et al., 2016).  

This study focuses on the productivity of bricklayers; therefore, this trade constitutes the 

population of the research. Owing to most of the data collection being done through 

structured observations, the sampling was two-fold (Bryman, 2016). First, the appropriate 

projects were identified where access was negotiated, and then observations took place. 

Due to time and cost constraints, the study was limited to the investigation of projects in 

North East England, UK. The projects were chosen as a result of purposive sampling. 

Project managers and members of the CIOB’s local hub were contacted to get information 

about projects involving substantial masonry works taking place during the doctorate 

timeframe. Finding projects with a significant amount of bricklaying was important as it 

allowed for a great number of observations of the same bricklayers. Based on these criteria, 

two projects were selected. These are introduced in Section 3.5.1.2. The pilot project 

described in detail in Section 3.5.1.1 was chosen through convenience sampling as it took 

place on the university campus. 

The second component of sampling was the sampling taking place on site. This can be 

further broken down into two elements: choosing the time of the observations and the 
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operation observed. According to Mundel (1985), sampling for the observations can be 

divided into two categories: intensive and extensive. The former means that for a limited 

period the same operation is observed, while the latter refers to the operation being 

observed at intervals for an extensive period of time. The time component of the on-site 

sampling is based on the observation schedule, which is discussed in detail in Section 3.5.1. 

Lastly, every effort was made to observe all bricklayers on the sites for an equal amount of 

time. However, not all bricklayers were performing all the different kinds of works. In 

addition, one company experienced high turnover.   

The experts for the interviews were selected through purposive sampling. Since the 

interviews were conducted in person, the geographical constraint was the same as 

mentioned above for the projects. Bricklaying lecturers in the colleges in North East England 

were contacted via email. The interviews were scheduled with the respondents. 

 

3.4 Ethical considerations 

The considerations and choices described in the previous sections make the planning of 

the research process possible. After the necessary theoretical considerations, the theory 

needs to be put into practice, and the actual data collection and analysis can start. However, 

before the data collection can commence, several ethical issues need to be considered. It 

is essential to ensure that the participants are not harmed, their privacy is not invaded, and 

they make an informed consent to participation (Bryman, 2016). 

The ethical risk level of the research project was designated medium because even though 

people participated in the research, they were not considered to be vulnerable. In addition, 

the data collection involves acquiring commercially sensitive information. 

The ethical considerations can be divided into two main categories. The first includes 

measures to ensure the protection of personal and commercial data. Apart from the 

researcher and the supervisory team, no one has access to either the physical (e.g., 

drawings) or the digital data (e.g., photos) collected. This also means that the productivity 

rates measured by observing the subcontractors have not been shared with the contractors. 

Furthermore, the bricklayers were not informed about how their supervisors evaluated them. 

The other group of issues are concerned with the researcher’s behaviour on site. The 

participants of the study were informed about the details of the study, and signed consent 

forms to confirm that they agreed to be included in it.  

Ultimately, the research project was approved by the Faculty Research Ethics Committee 

of Northumbria University’s Faculty of Engineering end Environment in advance of the data 

collection commencing. The research process was conducted in compliance with the ethical 

guidelines of Northumbria University. 
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3.5 Data collection 

For model development and analysis, data was collected in three ways. First, structured 

observations were conducted on two construction projects to study the process of 

bricklaying operations, bricklayers, and to take time measurements of the construction. The 

exact location and the bricklayer were always noted together with the time measurements. 

The usual organisation of masonry works was also observed. Secondly, the supervisors of 

the observed bricklayers were asked to evaluate the bricklayers based on pre-defined 

factors. These were necessary to study the effects of the factors on the productivity rate. 

Thirdly, semi-structured interviews with experts were conducted discussing the bricklaying 

process, bricklayers, and walls. The answers provided by the interviewees were used to 

better understand what was seen during the observations, to confirm the conclusions drawn 

from them, and to help with finalising the bricklaying process and the factors used in the 

model.   

 

3.5.1 Structured observations 

Structured observations allow data to be collected in a natural setting (Saunders et al., 

2016). As opposed to participant observations, in this case, the researcher is detached, 

does not take part in the observed activities (Saunders et al., 2016). That is why they are 

also called non-participatory or non-participant observations (Dainty, 2008; Bryman, 2016).  

Early examples for structured observations are time and motion studies (Saunders et al., 

2016). The first ones were conducted based on Frederick W. Taylor’s idea at the turn of the 

20th century. Taylor (1919) proposed the adoption of scientific management in 

manufacturing, but also shared examples from construction. According to this, precise 

instructions have to be developed for every task and the workers have to be trained to 

perform the operations in that exact way. To achieve this, first the managers have to study 

how skilled workers do their jobs, break down the tasks into elementary motions, and 

measure the time it takes to perform each. Based on the collected data, the unnecessary 

movements need to be eliminated and the standard time for the task set (Taylor, 1919). 

Sanford Thompson worked for Taylor and in six years starting from 1896 he studied the 

eight most important construction trades including masonry. Due to this experience, he was 

able to improve Taylor’s method (Taylor, 1911). Frank Gilbreth, who was originally asked 

to co-author a book with Thompson on the time and motion studies of masonry works, 

published his own book on bricklaying (Wrege et al., 1997). In this, among other topics, he 

detailed the exact movements masons have to make when building a wall (Gilbreth, 1909). 

These were the findings of the earliest motion study of bricklaying. Gilbreth also created a 

system of motions that can be used for any activity: these are the therbligs (his name 

backwards) (Mundel, 1985).  
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The British Standard – BS3138:1992 (withdrawn without replacement on 10/02/2020) – 

uses the term work study as a summary term for all studies that investigate activities in 

order to make them more efficient. It refers to motion study as method study, and lists time 

study as a technique for work measurement. Time study is in the category of direct 

observations as the observer is physically present on site, while at other times the activities 

are recorded, and then analysed later, away from the site. The exact definitions in 

BS3138:1992 are the following (British Standards Institution, 1992): 

 Work study: “The systematic examination of activities in order to improve the effective 

use of human and other resources”. 

 Method study: “The systematic recording and critical examination of ways of doing 

things in order to make improvements”. 

 Time study: “Observation, recording and rating of human work to establish the times 

required by a qualified worker to perform specified work under stated conditions at a 

defined rate of working. Times are recorded by direct observation, using a time 

measuring device; ratings are made simultaneously. Basic times are then derived by 

extension.” 

The last definition contains an element typically used in time studies: the rating. This means 

that during the observations the observer notes a percentage value together with each 

measurement. When selecting this value, the observer should consider the working 

conditions, the difficulty of the job, skills, effectiveness, and speed of the operatives but 

most importantly, their efforts (Mundel, 1985; Meyers, 1992; Olomolaiye et al., 1998). The 

rating reflects how the measured time compares to a standard time (Mundel, 1985). 

Determining the correct ratings requires experienced observers (Olomolaiye et al., 1998). 

In the case of this research project, rating was not used directly as the objective of the study 

was to determine the effect of the selected factors, most of which are considered when 

determining the rating, on the productivity rates.  

Structured observations are conducted based on a set of rules, hence these are also called 

systematic observations (Bryman, 2016).  

In the case of this research project, bricklaying works were observed. Because the process 

of bricklaying was to be modelled, a precise description of it was required. Performing 

observations, after reviewing the technical literature, aided this. However, for this project, 

the process did not need to be broken down into motions, as the goal was not to make it 

more efficient by omitting certain movements. Therefore, determining only the activities and 

their sequence was sufficient. Then, time measurements of performing these tasks were 

taken, with special emphasis on the laying bricks activity. Whenever it was possible, the 

time it took to build one course was measured, as this was long enough time to be 

meaningful and used for generalisation, but also short enough to measure. Always the net 

time was measured; however, note was made of any interruptions to the work, if there were 

any. Other tasks, such as preparation and jointing, were also observed and measured. 
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Bryman (2016) emphasised the importance of the observation schedule. The schedule of 

the observations of this research project was dependent upon the schedule of the 

construction projects visited, which determined what kind of works it was possible to 

observe and at which part of the site. The observation schedule needed to be flexible to 

follow the changes made to the project schedules. Sometimes the weather or equipment 

failure changed the plans on the day, on rare occasions even to the point of making 

observations impossible. The observations took place on different days of the week and at 

different times (morning, middle of the day, afternoon). The exact times were scheduled 

around the workers’ break times. Varying times and days were chosen in order to decrease 

time error (Saunders et al., 2016). Horner and Talhouni (1995) argued that there could be 

significant differences between the measurements taken on different days, on different 

sites, of different gangs. They have advised longer periods of observation to reduce this 

variability (Horner and Talhouni, 1995). In the case of this research project, the observations 

were conducted from when bricklaying works started to when they finished on site. 

Another way of performing site observations is to use equipment to capture images or video, 

for example, by mounting these at certain locations on site or utilising the site’s own 

surveillance system, then these photos or videos can be analysed either manually or 

automatically (Yang et al., 2015; Kim and Chi, 2020; Ahmadian Fard Fini et al., 2021). In 

this case, too many video cameras would have been needed to cover every façade of all 

the buildings that were constructed simultaneously. Therefore, the observations were 

carried out in person, by a single observer. Photos were taken to be used during data 

processing. 

Taylor (1911) did not agree with Thompson concealing the stopwatches while conducting 

his studies, he argued that since the results of the measurements ultimately affected the 

workers, they should be informed about them. However, he accepted the advantages this 

can have when the observed workers are not affected by the results (Taylor, 1911). In this 

research project, the stopwatch application of a mobile phone was used. Although it was 

not concealed, its purpose was not obvious to the observed operatives. 

The reactive effect is when the participant’s behaviour changes due to being observed 

(Bryman, 2016). Finding the suitable place for the observations on the narrow scaffolding 

is not an easy task as – apart from the aforementioned phenomenon – it should also be 

considered that the observer cannot stand in the way of other operatives, who are working 

on the building. The participants were informed about the observations, but they took place 

from an appropriate distance so as not to cause unnecessary stress for the workers. 

Sometimes it was not possible to stay hidden, the experience was that the operatives forgot 

about being observed after some time passed. In addition, since the observations took place 

over a course of several months, the bricklayers got accustomed to the observer being on 

site, and sometimes they did not even notice their presence. Hajikazemi et al. (2017) 

reported a similar experience. However, on a few occasions, when a concealed position 
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could not be found, the bricklayers became curious and wished to talk, which resulted in 

them not working as normal, making the measurements difficult.     

 

3.5.1.1 Pilot study 

Pilot observations were made at a school building construction project (Project A). The site 

visits took place from mid-September to mid-October 2018. 

The building was an annex to an already existing building on a University Campus. The 

façade of the building was constructed using a steel framing system with brick and glass 

panels. The brickwork was quite unique because the brick bonding was the Flemish bond, 

which is common for historic buildings but not for modern ones. Here it was chosen to match 

the Flemish bond used for the original building. In the case of the new walls, the brickwork 

was only ½ brick thick instead of 1 brick thick, as it would be with traditional Flemish bond. 

Figure 3.7 shows how the Flemish bond looks like. 

 

 
Figure 3.7 Flemish bond on Project A (photo taken by Orsolya Bokor in 2018)  

 

Another interesting feature of the project was that 1/6 of the bricks had special shapes. 

The unique features of this project and the short amount of time that could be spent on site 

did not allow for the time measurements made here to be used together with the 

measurements from the other projects. However, the observations made on this site were 

important for determining the bricklaying process and for establishing the way future 

observations were made. 
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3.5.1.2 Projects 

The majority of the observations took place at two projects (Projects B and C). As mentioned 

before, they were both in North East England. Project B was a £30m sports complex 

construction project, which entailed the construction of one, steel-framed sports hall. On the 

ground floor, the external infills were cavity walls, where the inner leaf was a 100mm-thick 

block wall with rounded pointing and the outer leaf was a brick wall constructed of perforated 

Staffordshire blue engineering bricks with recessed pointing. The two leaves were tied 

together, and insulation was placed between them. The rest of the façade had metal 

cladding. The internal partition walls were 140mm-thick block walls with rounded pointing. 

In the case of all the walls, simple stretcher bond was used. Figures 3.8 and 3.9 show a 

block and a blue brick wall section, respectively. 

 

 
Figure 3.8. Blockwork on Project B (photo taken by Orsolya Bokor in 2019) 
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Figure 3.9 Blue bricks on Project B (photo taken by Orsolya Bokor in 2019) 

 

At this project, masonry works were subcontracted and performed by one masonry 

contractor. On average, eight bricklayers and four labourers were on site. 20 site visits took 

place between mid-November 2018 and mid-March 2019. 

 

Project C, a £80m student accommodation complex, comprised of the construction of 12 

buildings. Three buildings had little to no brickwork. Five buildings had brick façades; 

however, they were constructed using prefabricated modules with brick slip finishes. The 

remaining four buildings had brick façades, as well, and these were constructed in the 

traditional way, on site. Steel framing system was used for the external walls. The outer leaf 

was the brick wall, which was tied to the inner leaf with the help of channels mounted on 

the insulation, which only partially filled the cavity. There were two types of bricks used for 

these buildings. One was a stock brick with a single frogging in various shades of red, the 

other was a gray, solid concrete brick. The brick slips on the prefabricated modules matched 

these bricks in appearance. In the case of both bricks, simple, stretcher bond was used. 

The pointing was recessed on the red brick façades, and a combination of rounded and 

recessed on the gray brick walls. Red and gray brick wall sections can be seen in Figures 

3.10 and 3.11, respectively.    
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Figure 3.10 Red bricks on Project C (photo taken by Orsolya Bokor in 2019) 

 

 
Figure 3.11 Gray bricks on Project C (photo taken by Orsolya Bokor in 2019) 

 

The bricklaying works of the two red brick and the two gray brick buildings were 

subcontracted to two different masonry contractors. On average, ten bricklayers and four 

labourers were on site. 27 site visits took place between mid-February and mid-June 2019.   

Table 3.3 gives a detailed description of the bricks and blocks used on the two projects. 
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Material Type Size Dry density 
Red brick Stock bricks with 

a single frogging 

215x102x65mm 1650 kg/m3 

Gray brick Solid, concrete 

bricks 

215x100x65mm 2100 kg/m3 

Blue brick Perforated 

Staffordshire 

engineering 

bricks 

215x102.5x65mm 1800 kg/m3 

Block of external 

wall 

Solid, concrete 

blocks 

440x215x100mm 2050 kg/m3 

Block of internal 

wall 

Solid, concrete 

blocks 

440x215x140mm 2050 kg/m3 

Table 3.3 Summary of material properties 

 

3.5.2 Questionnaire for supervisors 

To complement the data collected via observations, the supervisors of the bricklayers were 

also asked to evaluate the operatives by filling in a questionnaire. 

In the case of questionnaires, the respondents have to answer the same set of questions 

(Saunders et al., 2016). Self-completed questionnaires are sent to the respondents, for 

example, via email, and they answer at their own leisure, and return the answers (Bryman, 

2016). Another possibility is for the researcher to ask the questions face-to-face, via phone, 

or online (Saunders et al., 2016). This can be considered a structured interview (Bryman, 

2016). The questions can be divided into two categories: open and closed (Fellows and Liu, 

2015). Open questions allow the respondents to answer freely, in the form of their choice 

(Fellows and Liu, 2015). Closed questions, on the other hand, have a fixed number of 

answers determined by the researcher, from which the respondent can choose (Fellows 

and Liu, 2015).  

In the case of this research project, the supervisors filled in the questionnaire consisting of 

closed questions during one of the site visits. The questionnaire asked them to put the 

operatives into one of three categories regarding each factor. The factors were the 

following: 

 Quality: the quality of the work performed by the operative, 

 Perceived speed: the pace with which the operative is working, 

 Knowledge: technical knowledge, the operative knows how to build different walls, 

 Independence: it refers to the operative knowing how to proceed, whether they can 

work without constant supervision. 
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The factors will be discussed in more detail in Section 4.1.2. 

Table 3.4 shows the categories the supervisors could choose from regarding the factors. 

The experience of the bricklayers – expressed as the number of years spent working in 

construction – was also added to the table. 

  

Factors Categories/Scale 
1 2 3 

Quality Acceptable Good Excellent 

Perceived speed Slow Normal Fast 

Knowledge Need to be improved Adequate Excellent 

Independence No Medium Yes 
Table 3.4 Summary of factors in the questionnaire 

 

The supervisors were chosen to evaluate the bricklayers as they were familiar with their 

work and could also be objective about their performance. 

 

3.5.3 Semi-structured interviews 

As the final part of data collection, semi-structured interviews were also conducted. 

Based on how rigid the framework of the interview is, interviews can be categorised as 

structured, semi-structured, and unstructured (Fellows and Liu, 2015). In the case of 

structured interviews, the interviewer asks the questions verbatim, in the same order from 

all respondents. Unstructured and semi-structured interviews are also called qualitative 

research interviews (Saunders et al., 2016). Unstructured interviews are similar to 

conversations, where the interviewer has a few notes aiding them to cover the topics 

(Bryman, 2016). As its name suggests, semi-structured interviews are halfway between 

structured and unstructured interviews. The interviewer usually has an interview guide, a 

list of questions they would like to ask (Bryman, 2016). However, additional questions can 

also be asked (Bryman, 2016). Despite this, the questions asked are mostly the same in 

the case of all the interviews (Bryman, 2016). Probing questions are often used in qualitative 

interviews. These are asked to further explore responses which are important to the topic 

(Saunders et al., 2016).  

In the case of this research project, two semi-structured interviews were conducted with 

purposively selected experts. The experts were both bricklaying lecturers at colleges with 

substantial industry experience. The mostly open-ended questions had been prepared in 

advance and had been divided into three categories: process, walls, and bricklayers (see 

Appendix B). The questions in the first group served to better understand the process of 

wall construction as it had been observed on site. Furthermore, questions about whether 

the process was the same at other parts of the country and Europe and if it had changed 
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over time were also answered. The second group of questions regarding the walls was used 

to map the most important wall characteristics. These helped with confirming and finalising 

the levels used in the difficulty factor and deciding what other wall factors to include in the 

model. The last group of questions focused on the bricklayers. Most of them concentrated 

on the skills of the bricklayers to help in finalising the worker characteristics used in the 

model. Some questions were concerned with the organisation of the work on site. 

 

3.6 Data processing 

Before the data analysis could begin, the collected data needed to be processed.  

During the observations, field notes were taken. The majority of these were measurements. 

The most important ones of them were those of the laying bricks activity. It meant that the 

number of bricks laid and the time it took to perform this task were written down. ½ bricks 

were counted as whole bricks because the time it takes to lay them is the same for both. In 

addition, note was made of the bricklayer whose work was measured, and the location 

(building, floor, number of course) of the given course, as well. Based on these pieces of 

information, data tables were compiled. The rows represent the measurements. The first 

column contains the productivity rate. As mentioned in Table 2.2, the productivity rate best 

fitting research purposes is equal to the output divided by the productive time. In this case, 

the number of bricks laid were divided by the net times measured during the observations, 

as discussed in Section 3.5.1. The dimension of this continuous variable is bricks/hour. Next 

to this value come the factors one by one. These are all ordinal variables measured on a 

scale of 1 to 3. First of these are the worker characteristics: the quality, perceived speed, 

knowledge, independence scores given by the supervisors in the evaluation, and the 

experience category. With the help of the floor plans and elevations provided by the 

contractors, each wall section was given an ID, which was also included in the data table. 

The wall characteristics – the course difficulty and the material – have their own columns, 

as well.  

Table 3.5 shows a few examples from the final, simplified data table, which contains the 

productivity rates with the corresponding values of the seven factors. Altogether there are 

129 rows in this table; therefore, the ID runs from 1 to 129. (The examples in Table 3.5 

appear transposed to better fit the page.)  
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ID 16 32 48 

Productivity rate [bricks/h] 75 100 120 

Quality 1 3 2 

Perceived speed 2 3 1 

Knowledge 1 3 3 

Independence 1 3 3 

Experience 1 3 2 

Course difficulty 1 1 2 

Brick type 1 3 2 
Table 3.5 Examples from the data table 

 

In some cases, only one measurement could be made for the two bricklayers working on a 

course. However, in the data table individual measurements were needed. Therefore, these 

time measurements were divided by two for the two bricklayers, and the average of the 

scores for quality, perceived speed, knowledge, independence, and experience was 

calculated. This meant that half-scores appeared in the data table for some factors. 

After the first phase of modelling, to improve the accuracy of the model, six datapoints (#62, 

78, 79, 81, 82, and 84) were removed. This will be explained in detail in Chapter 5. Table 

3.6 shows the number of datapoints for each category. The distribution of the datapoints 

among the categories is not uniform because the bricklayers on each site were a given, and 

even though every effort was made to take the same amount of observations of the various 

bricklayers, due to the construction schedule and unexpected events, such as equipment 

breakdown, this was not always possible. 

 

Factor/Scale 1 1.5 2 2.5 3 
Quality (Q) 24 0 36 8 55 

Perceived speed (PS) 10 0 36 18 59 

Knowledge (K) 24 14 24 12 49 

Independence (I) 14 14 26 16 53 

Experience (E) 22 14 43 4 40 

Course difficulty (CD) 83 0 34 0 6 

Brick type (BT) 61 0 38 0 24 
Table 3.6 Number of datapoints for each value of the factors 

 

The time measurements of the other activities, such as the mounting of the profiles, were 

entered into a separate data table. In this case, the scores of the bricklayers performing the 

tasks were not part of the table, and the type of brick was only noted for the jointing activity. 
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The task durations of these activities were calculated as the average of the time 

measurements.   

The time measurements (taken at Project B) for blockwork were processed in the same 

manner as those for brickwork. However, this data table was not used in later stages of the 

research project, as the collected data would not have been enough for the first part of the 

modelling. After adding more observations to these in the future, the data could be used for 

modelling blockwork and a comparison with brickwork would be possible. 

 

3.7 Modelling 

After the data table was ready, modelling could start. The developed model was a hybrid 

comprised of artificial neural network (ANN) and discrete-event simulation (DES) 

components. The former was used to determine the productivity rate for the activity laying 

bricks. The networks were trained and tested with the data in the assembled final data table, 

and the best performing networks were chosen. Then a model project was defined, and 

input into these. The output of this part of the model was used as the input for the simulation 

component. The effects of the selected factors were also examined with the help of the ANN 

model component. DES was used to model the process of brickwork to obtain the process 

duration and to examine the various resource allocation options.  

Modelling is briefly introduced in this section. More details about the selected factors and 

the bricklaying process will be provided in Chapter 4, while Chapters 5 and 7 will explain 

the ANN and DES model components, respectively.    

 

3.7.1 Artificial neural networks 

ANN modelling was chosen to explore the relationship between the factors and the 

productivity rate because it is able to handle these complex links, learn from even imperfect 

datasets, and capable of making generalisations based on them (Chao and Skibniewski, 

1994; Flood and Kartam, 1994a).  

In the feedforward networks created, the input, hidden, and output layers of the ANN were 

connected in this order. The input layer consisted of one neuron for each of the seven 

factors, while the output layer had one neuron for the forecasted productivity rate. The 

network was trained in a supervised way, meaning that the values of the input variables and 

the targeted output values were fed into it. The values came from the data table produced 

during the data processing explained in the previous section. 

Hundreds of networks were created by changing various settings. One of them was the 

number of hidden neurons and layers. The networks had hidden neurons between 5 and 

20 in one or two layers. Other than modifying the network architecture, six different learning 

algorithms, according to which the weights and biases are calculated in the network, were 

also tested. Finally, various transfer functions, which change the value of the input going 
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into the neurons, were checked; different combinations of tangent sigmoid, log-sigmoid, and 

linear activation functions were used. 

The created networks were ranked based on their correlation coefficients, the mean 

squared errors, and the mean absolute percentage errors, and the best performing 

networks were chosen. Sensitivity analysis was run on these networks to determine how 

the factors affect the productivity rate.  

A model project was created with model bricklayers and wall sections. These became the 

input for the ANN component. The output provided by the above-mentioned networks for 

the model project input was used as the input for the DES model component.   

 

3.7.2 Simulation 

Simulation can be well used to model construction operations, as this way the uncertainties, 

dependencies, and complicated behaviour inherent to construction can be captured. In 

addition, simulation allows for experimenting on systems (Law, 2015; White and Ingalls, 

2017). Discrete-event simulation is a simulation method that was chosen because it focuses 

on the process itself, and can provide the process duration, which was the purpose of the 

model. Moreover, resource allocation options can also be tested with the help of DES. 

Due to two methods being combined in a hybrid model, the structure and the interaction 

points had to be defined. The ANN and DES components made up a sequential structure, 

as the ANN part was run first, and its output became the input of the DES component, which 

provided the final output of the model. The interface variable, i.e., where the two 

components were linked, was the productivity rate of the activity laying bricks calculated by 

the ANN component and input into the DES component. 

For building the model, first, the process of brickwork was defined based on the 

observations and the interviews. The steps of the workflow became the tasks defined in the 

DES model. The duration of these activities was determined next. The duration of the 

activity laying bricks was provided by the ANN model for the model project data input, while 

the durations of the other tasks were from the data table assembled based on the 

observations. Finally, the labour resources were assigned to the tasks. Various model 

bricklaying gangs were created and tested to investigate which pairings were the most 

productive.   

 

3.8 Statistical analysis 

As mentioned before, the ANN model component was used to examine the effects of the 

factors on the productivity rate. However, ANN works as a black box, where the calculations 

are hidden from the users (Boussabaine, 1996; Adeli, 2001). Therefore, to complement 

these, statistical analyses were also performed to investigate the effects of the factors 

individually and together on the productivity rate in a more transparent way. In order for the 
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results to be comparable to those of the ANN model component, the same data table was 

used. The analysis and the results will be presented in Chapter 6 in detail. 

First, the normality of the distribution of data in each category of the factors and the 

homogeneity of the variances of each group needed to be checked because the outcome 

of these determines whether parametric or non-parametric tests should be used to study 

the effects of the factors on the productivity rate. To examine normality, Kolmogorov-

Smirnov and Shapiro-Wilk tests were run, and the skewness and kurtosis values were 

studied. The homogeneity of the variances was checked using Levene’s and Hartley’s tests. 

Due to not all categories following a normal distribution and having homogeneous 

variances, both parametric and non-parametric tests were performed. From the former 

group the F-statistic of the one-way analysis of variance, in the case of homogeneous 

variances, and the F-statistic of the Welch’s test and the Brown-Forsythe’s test, in the case 

of heterogeneous variances, was examined to determine which factors had a significant 

effect on the productivity rate. In addition, planned contrasts were also performed to study 

which categories were significantly different from the others within a given factor. From the 

non-parametric tests, Kruskal-Wallis tests were performed to find the factors with a 

significant impact on the productivity rate. These were complemented by pairwise 

comparisons to determine the categories that were significantly different from the others. 

Finally, regression analysis was also performed to examine how each factor influenced the 

productivity rate. Some of the models created included all the factors, while others were 

comprised of only selected factors. 

Statistical analysis was also performed on the process duration data generated with the 

DES model component for the model project data input. The same tests were performed as 

mentioned above, except for the regression analysis. The results will be discussed in 

Chapter 8.   

   

3.9 Chapter summary 

This chapter discussed the decisions – from the philosophical considerations, through 

research design, to research methods – made about conducting the research with the help 

of the ‘research onion’. Data collection and processing were also presented in detail. 

For modelling bricklaying works, it was necessary to collect information on bricklaying 

operations and bricklayers. This was achieved in multiple ways. The most prominent one 

was through structured observations, which took place on two construction sites in North 

East England from mid-November 2018 to mid-June 2019. Three different masonry sub-

contractors worked with the three different materials used; therefore, altogether 21 

bricklayers were observed. Based on the time measurements and the evaluation of the 

bricklayers by their supervisors, the data table was produced, which was used for the 

modelling and was also analysed with statistical methods. Besides the measurements, the 
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process of bricklaying was also observed because the steps had to be determined for the 

sequence defined in the simulation model. Semi-structured interviews with experts were 

also conducted. The questions were mostly open-ended and were divided into three 

categories: process, wall, and bricklayers. The responses were used to better understand 

these topics. For example, the ones in the process group helped finalise and verify the 

workflow in the DES model component. Modelling was also briefly discussed in this chapter, 

it will be presented in detail in Chapters 4, 5, and 7. The particulars of the statistical analyses 

can be found in Chapters 6 and 8.  
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CHAPTER 4 

MODELLING PART 1: PRODUCTIVITY INFLUENCING FACTORS 
AND THE BRICKLAYING PROCESS 

 

4.1 Determining the factors 

4.1.1 Important labour productivity influencing factors 

Labour productivity, in general, is influenced by a great number of factors. As detailed in 

Chapter 2, considerable research efforts have been devoted to list and categorise these, 

and to determine the most important ones. The rankings may differ from country to country 

or depending on, for example, which stakeholder group’s (contractors, craftsmen etc.)  point 

of view they represent. Usually, when modelling construction operations or specific works, 

a smaller subset of factors is selected in order for the model to be useful and still 

manageable. Graham and Smith (2004) recommended that at each stage only the known 

and significant variables should be included in the model. However, not every factor lends 

itself to simple measuring (Horner and Talhouni, 1995). 

One possible way to divide the productivity influencing factors is based on how they can be 

taken into account in the planning phase of construction projects: 

 known in advance: These are the factors that can be considered in the planning phase 

because they are known and can be regarded as constant, as in they are not going 

to change during construction. 

 unknown, can be changed: These factors are unknown prior to construction, 

therefore, cannot be taken into consideration, when planning the construction phase. 

However, for instance, with proper management, they can either be avoided, or 

handled when they arise.  

 unknown, cannot be changed: These factors are unknown prior to construction, and 

while their effects might be mitigated, their causes cannot be modified.  

Table 2.4 in Section 2.6 summarised the productivity impacting factors collected by studies 

of bricklaying works. These were categorised into design, gang, management, site-related, 

and external factors. Design-related factors (e.g., difficulty of works), most of the gang-

related factors (e.g., experience of workers), and part of the management-related factors 

(e.g., working days and hours) belong to the first group in the categorisation above because 

these are known in the planning phase of the project. The second group (unknown, can be 

changed) includes site-related factors, such as, site congestion as these issues can be 

overcome during construction. On the other hand, the external factors, for example, the 

weather, cannot be changed. Thomas and Sakarcan (1994) suggested that factors that can 

be predicted in advance can be used for forecasts. In line with this, this study focuses on 
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factors that belong to the first category because it aims to help better plan projects; 

therefore, the factors considered are known prior to construction. 

Hasan et al. (2018) argued that productivity could only be improved by studying the work 

itself and the workers performing the work. This recommendation has been confirmed by 

various productivity research efforts, which found that the skills and experience of workers 

to be one of the most important productivity influencing factors. See, for example, Tsehayae 

and Robinson Fayek’s (2014), Hamza et al.’s (2019), or Karthik and Kameswara Rao’s 

(2019) studies. Alaghbari et al. (2019) found that technical factors, such as design 

complexity, were also important along with experience and skills.  

Despite skills and experience ranking high in numerous studies and the general shortage 

of trained construction workers, most of the bricklaying productivity models did not include 

these factors. For example, the factor model developed by Thomas and Yiakoumis (1987) 

and further improved by Thomas and Sakarcan (1994) and Sweis et al. (2009)  did not take 

these factors into account; however, it did include design-related ones. The latter study 

used the work complexity scale determined by Thomas and Završki (1999) as did Thomas 

and Sudhakumar (2014). Experience and a few design-related factors were included by 

Gerek et al. (2015), Aswed (2016), and Al-Somaydaii (2016) but not skills. 

Even though skills ranked high in a number of studies, it was not explained what exactly 

was meant by the term. When skill shortage is mentioned, or government policies, skills are 

usually measured by qualification levels (Vogl and Abdel-Wahab, 2015). In the case of a 

handful of studies, skills were included and defined, as well. One such model is 

Olomolaiye’s (1988), where skills were the function of natural mental and physical abilities, 

training, and experience, which are reflected in speed. Another example is Florez’s (2017) 

study, where skill was defined as being good at specific works. This model considers which 

type of walls the given bricklayer is better suited to: brick or block walls, detailed or non-

detailed walls. Wall difficulty was also considered (Florez, 2017).      

Horner and Talhouni (1995) argued that great variations in daily bricklaying output was due 

to people, project, and site-related factors. The first group contained factors such as the 

quality of work, the speed, and skills of workers, which made the selection and training of 

workers important. In this case, skills were meant as the ability to solve problems. Adequate 

quality was required to avoid wasteful rework, while speed was seen as something that 

would come and go with experience. Based on the conducted interviews described in 

Section 3.5, bricklaying training in the UK seems to agree with this, as the practical 

assessments of the students are marked based on quality: the work needs to be within the 

acceptable tolerances set by the National House Building Council based on the British 

Standard. Students learn to build walls of proper quality and are hoped to improve speed in 

time. This is the opposite of what Gilbreth (1909) recommended. He suggested that speed 

was more important and the skills would come with time (Gilbreth, 1909). Now students are 

also trained to build different types of walls (different bonds, straight and curved walls, 
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decorations), using various materials (bricks, blocks), how to read and interpret drawings, 

and do necessary calculations.  

 

4.1.2 Factors used in the artificial neural network (ANN) model component 

Based on the above, this study aimed to explore how worker- and design-related factors 

affect bricklaying productivity. Out of the worker-related factors skills and experience were 

chosen. Skills were broken down into a further four factors: quality, perceived speed, 

knowledge, and independence. From the design-related factors, course difficulty and brick 

type were selected.  

Quality, perceived speed, and knowledge were mentioned in previous studies, while 

independence was not. The bricklayers working on the observed projects were evaluated 

by their supervisors based on these characteristics. The categories of them are explained 

in Table 4.1. Following on from the nature of the evaluation, these factors are subjective. 

Quality refers to the quality of the work performed by the bricklayer. The categories go from 

acceptable to excellent as below acceptable quality, the work needs to be redone. 

Therefore, it is assumed that the quality of the bricklayer’s work have to be acceptable at 

least for them to be employed as a bricklayer on a project. Perceived speed is the pace with 

which the bricklayer is usually working in the supervisor’s opinion. Knowledge refers to the 

bricklayer’s technical knowledge, whether they are familiar with how to construct various 

wall types, using different bricks etc. Independence means that the bricklayer is capable of 

working on their own, without the need for constant supervision, after finishing one wall 

section, they are able to find what to do next. 

Determining the experience category was based on the number of years the bricklayer has 

worked in construction. Bricklayers with less than 10 years of experience were put into the 

first category, and with more than 30 years into the third one. 

 

Factors Categories 
 1 2 3 
Quality Acceptable Good Excellent 

Perceived speed Slow Normal Fast 

Knowledge Need to be 

improved 

Adequate Excellent 

Independence No Medium Yes 

Experience Limited Medium Substantial 
Table 4.1 Summary of bricklayer-related factors 

 

Altogether the work of 21 bricklayers was observed on the two projects. Table 4.2 shows 

their distribution among the categories of the worker-related factors.  
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Factor/Scale 1 2 3 
Quality (Q) 4 3 14 

Perceived speed (PS) 1 11 9 

Knowledge (K) 4 6 11 

Independence (I) 3 4 14 

Experience (E) 5 6 10 
Table 4.2 Distribution of bricklayers among the categories of the factors 

 

Two design-related factors were considered: course difficulty and brick type.  

Most of the studies mentioned above and in Chapter 2 collected daily output data; however, 

as Horner and Talhouni (1995) observed, there could be great variations between these 

datapoints. Their suggestion was to have longer intervals between the productivity 

calculations (Horner and Talhouni, 1995). However, it is worth considering that if the 

“readings” are closer to each other, then they are impacted by potentially fewer factors, 

which may also be observed. Consequently, in this study, the time it took to measure a 

course of brickwork was measured. As a result of this, the difficulty levels also needed to 

be determined per course. The basis of categorisation was Thomas and Završki’s (1999) 

work content scale, which has been used – as shown before – in numerous bricklaying 

studies. However, it was developed for describing projects, not individual courses because 

it was paired with daily output measurements. Here, three course difficulty levels were 

defined: easy, medium, and difficult. These are illustrated in Table 4.3. The courses 

belonging to the easy category are the straight ones with only half-cuts. In the work content 

scale, level 1 projects predominantly have long, straight walls (Thomas and Završki, 1999). 

Medium courses are divided by openings, such as doors and windows, and might have 

corners or movement joints within them. Ordinary openings at regular intervals describe 

most walls in the work content scale (Thomas and Završki, 1999). The most difficult courses 

are characterised by custom cuts next to decorative elements (for example, an arch), 

various vents, or, for instance, because the top edge of the last course at the top of the 

building is not horizontal. These all need to be measured individually. In the work content 

scale, some ornamental work differentiates level 3 from level 2. Levels 4 and 5 contain walls 

with extensive ornamental work, non-perpendicular corners, and various sized units 

(Thomas and Završki, 1999). Since such walls were not observed, these levels were not 

used in this study. 
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1 

 

Easy 
Half-cuts only 

Straight courses 

2 

 

Medium 
Openings (windows, 

doors) within the 

course 

Corners, movement 

joints 

Half-cuts only 

3 

 

Difficult 
Custom cuts next to 

vents, decorative 

elements, at the top 

of the building 

 
Table 4.3 Course difficulty levels (Photos taken by Orsolya Bokor in 2019) 

 

The other design-related factor selected in this study is brick type. The construction of three 

different types of brick walls was observed. Table 4.4 summarises the most important 

characteristics of the bricks. The order red-gray-blue reflects the difficulty of building with 

these bricks based on the site observations and interviews. 
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1 

 

Red bricks 
stock brick,  

single frogging, 

various shades of 

red, 

215x102x65mm, 

dry density: 1650 

kg/m3 

2 

 

Gray bricks 
concrete brick, 

solid, 

gray, 

215x100x65mm, 

dry density: 2100 

kg/m3 

3 

 

Blue bricks 
Staffordshire 

engineering brick, 

perforated,  

blue, 

215x102.5x65mm 

dry density: 1800 

kg/m3 

Table 4.4 Brick types (Photos taken by Orsolya Bokor in 2019) 

 

The red bricks are stock bricks, meaning that there could be easily detectable size 

differences between the individual bricks making it harder to keep the vertical joints running 

nicely down the entire façade in perfect lines. However, these irregularities in size also allow 

for slight irregularities in the final wall to be aesthetically acceptable. In addition, these are 
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the easiest to work with because of they absorb water from the mortar quickly helping with 

setting. Furthermore, the frogging (the indentation on the top of the bricks) prevents floating 

and makes it easier to cut. 

The gray bricks are solid concrete bricks, which makes them uniform, hence easier to lay 

them to a line. On the other hand, their water absorption is lower making setting slower. 

Moreover, the lack of frogging means that they are more prone to floating and can be easily 

moved inadvertently before the mortar sets. 

The blue bricks are engineering bricks used for their low water absorption characteristic. 

However, this also means that the setting of the mortar takes the longest in their case, and 

they easily float, as well. Fewer courses can be laid at the same time. Also, jointing is the 

most difficult in the case of blue brick walls. This is the bricklayers’ least favourite brick to 

work with. 

 

4.2 The process of bricklaying 

For the discrete-event simulation (DES) component of the model, the steps of wall section 

construction need to be determined. In this study, the process of building the outer leaf of a 

cavity wall is used as an example because this was observed during data collection. The 

basic principle is the same for any kind of wall construction; therefore, the model can be 

easily adjusted to other types of walls. 

The projects where the observations took place were introduced in Section 3.5.1. Altogether 

three different types of bricks were used for the brick façades as shown in Table 4.4. A 

sample cavity wall section can be seen in Figure 4.1. The inner leaf in this case was a steel 

framing system. The insulation partially filled the cavity. The outer leaf was connected to 

the insulation through ties placed in the channels mounted to it. The photo shows the red 

bricks used in the case of two buildings, while in the case of another two buildings, gray 

bricks were used instead of the red ones, but the layers were the same. In the case of the 

sports hall, a 100mm-thick solid, concrete block wall served as the inner leaf, while blue 

bricks made up the outer wythe. The insulation partially filled the cavity. Ties connected the 

two leaves. These were embedded in the mortar beds on both sides. 
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Figure 4.1 Cavity wall construction (Photo taken by Orsolya Bokor in 2019) 

 

The steps of building the outer brick leaf of a cavity wall are shown in Figure 4.2. The 

process described here is based on site observations and interviews. 

 

 
Figure 4.2 Process of brick wall construction 

 

The first task is preparation. This means that the necessary materials and tools need to be 

placed in front of the given wall section. This includes stacking bricks and placing mortar (or 

spot) boards. However, other materials, such as various ties, weeps, damp proof course, 

different tapes, movement joint fillers, are also needed. All these can be stored on loading 

platforms of the scaffolding; therefore, this step means that the materials are moved from 

there to the wall section. Usually, during the construction, pallets of bricks and mortar tubs 

are transported to the loading platforms from material depots on site by designated 

labourers using forklifts. Preparation can either be done by labourers or bricklayers 

depending on gang composition. Generally, the supply of bricks and mortar is continuous, 

as often not the whole amount needed for a wall section would fit in front of it. If there are 

labourers to bring the materials, then this can be done parallel to the construction of the 

wall. However, if one of the bricklayers is responsible for this, then at times they have to 

stop laying bricks to get the materials interrupting the process. The necessary tools and 
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equipment include, for instance, various trowels, spirit levels, profiles, lines, measuring 

tapes, boxcutters, chisels, hammers, brick clamps, depending on the jointing type, chariot 

jointers. 

Once all the necessary tools and materials are available by the wall section to be built, the 

metal or wooden profiles need to be mounted. Figure 4.3 shows one in use with pink line 

attached to it. The profiles on either side of the future wall section mark the start and finish 

points of the courses. They also need to be perfectly vertical; therefore, their position is 

checked by a spirit level. The markings on the profiles ensure the gauge, i.e., that every 

course is of the same height. The line, which is used for making sure that the courses are 

level, is stretched between the two profiles at the correct level in order for the outer top edge 

of the bricks to be laid to it. 

  

 
Figure 4.3 Profile and line (Photo taken by Orsolya Bokor in 2019) 

 

Laying bricks takes up the most time in the process, the productivity of this task determines 

the productivity of the process; therefore, the observations were focused on this. The 

borders of the wall section are usually corners or movement joints. The line cannot be 

stretched over more than 30-40 bricks, otherwise there would be considerable sagging 

resulting in level issues. The height of the wall section is determined by the lifts. 

Approximately 1.5 m of brickwork can be built by the bricklayers standing on the same level 
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of the scaffolding. The number of courses that can be laid in a day depends on the type of 

brick, mortar, and the weather. On every floor there is a damp proof course guiding the 

water from the cavity through the weeps to the outer side of the wall. This black membrane 

can be seen in Figure 4.4 before it was cut to fit the outer plane of the wall. The weep is 

circled in red in the photo. About every fourth brick is removed – usually before jointing is 

started – in this course, and hessian sheets are woven through them. These are used to 

clean the cavity from the mortar that falls in during the construction of the wall section. 

 
Figure 4.4 Hessian, weep, damp proof course (Photo taken by Orsolya Bokor in 2019) 

 

The laying starts by spreading mortar in the length of approximately three bricks, then the 

bricks are placed one by one with one end of them covered in mortar for the vertical joints. 

The face of the bricks is constantly cleaned of excess mortar, while from the back mortar is 

usually removed at the end of each course. If the bricks need to be cut, either a brick cutter 

or a combination of hammer and chisel are used. After the entire course is laid, the line 

needs to be moved into its next position, and the laying starts again. From time to time, the 

plumb (verticality) of the built part of the section needs to be checked by a spirit level. 

Two types of ties are used, and both need to be placed in-between courses. One is for 

providing connection between the two leaves of the wall. The other ties the neighbouring 

wall sections together. Figure 4.5 shows both types.  
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Figure 4.5 Ties (Photo taken by Orsolya Bokor in 2019) 

 

After the courses of the wall section have been laid, the profiles can be removed. The last 

step is jointing, i.e., the tidying of the joints. The time that needs to pass between the laying 

of the bricks and jointing depends on the type of the brick, the mortar, and the weather. The 

type of jointing determines the tools that are used for this task. The different jointing options 

are shown in Table 4.5. 
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Flush 

 

Struck 

 

Weather-struck and 

cut 

 

Rounded or tooled 

 

Recessed 

Table 4.5 Types of jointing (based on Carruthers and Coote (2013))  

 

In the case of the observed projects, recessed joints were created with the help of chariot 

jointers. The only exception was the vertical joint of the gray brick walls, which were 

rounded, shaped by jointing irons. Jointing is usually done from the top of the wall section, 

moving down. First the vertical, then the horizontal joints are tidied. After jointing, the brick 

surface is brushed to remove any mortar specks or other stains. 

Figure 4.6 shows a blue brick wall section, where jointing has not been done in the top five 

courses (above the red line) but has been finished in the lower section (below the red line). 
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Figure 4.6 Brick wall before and after jointing (Photo taken by Orsolya Bokor in 2019) 

 

Based on the observations and the interviews, it can be stated that usually two bricklayers 

work on a wall section, going from opposite directions. Therefore, in this study, the term 

bricklaying gang refers to a gang of two bricklayers. 

 

4.3 The hybrid DES-ANN model  

The basic building blocks of the model were introduced above. Figure 4.7 shows the 

structure of the model. It consists of two main components: an artificial neural network 

(ANN) and a discrete-event simulation (DES) part, thus creating a hybrid DES-ANN model. 
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Figure 4.7 The hybrid DES-ANN model structure 

 

As detailed in Section 3.6 a data table was compiled based on the measurements of the 

work study, the supervisors’ evaluation of the workers, and the observations concerning the 

wall types. This way each productivity rate measurement for the laying bricks task (in 

bricks/hour) had a corresponding value for the worker-related factors (quality, perceived 

speed, knowledge, independence, and experience) and the wall-related factors (course 

difficulty and brick type). This data table was used to train, test, and validate the ANN model 

component. This part of the model provided the duration for the laying bricks task in the 

DES model component. The ANN model component is described in detail in Chapter 5. 

The steps of the bricklaying process shown in Figure 4.2 were the tasks defined in the DES 

model component. The task durations were determined based on the measurements 

obtained through the site observations, and for the laying bricks task by the ANN part of the 

model. The necessary labour resources were assigned to the tasks based on the site 

observations. The DES part of the model provided the process duration and the optimal 

way of labour resource allocation. The DES model component is described in detail in 

Chapter 7. 

It is worth noting that the process duration that the DES model component provides is the 

productive time. Usually, the total time needed for construction includes unavoidable and 

avoidable delays on top of the productive time (Horner and Talhouni, 1995; Greenwood and 

Shaglouf, 1997). Total time can be considered as the sum of productive, unproductive, 

supervision, and relaxation time (Olomolaiye, 1988). Relaxation includes the official breaks, 

for instance, for lunch. This always needs to be part of the working day. Supervision time 

refers to receiving instructions and discussing issues with the supervisors. Unproductive 

time can stem from many sources. It might be unavoidable, for example, due to the weather. 

For instance, brickwork should not be built in freezing conditions. Avoidable delays, such 

as ones owing to material shortage or equipment breakdown, can be avoided or handled 

well with proper site management. 
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4.4 Chapter summary 

This is the first of three chapters discussing the developed hybrid model combining discrete-

event simulation (DES) and artificial neural networks (ANNs). The first part dealt with the 

productivity influencing factors chosen for this study. This was done based on the literature 

review, the observations, and the interviews conducted. Since the model aims to help 

construction project planning, those factors were considered which can be known in the 

planning phase of the projects. Due to this, worker (quality, perceived speed, knowledge, 

independence, experience) and wall-related (course difficulty, brick type) factors were 

selected, which were explained in detail. Then the bricklaying process was presented, 

discussing the steps, and illustrating it with photos from the observations. Finally, the DES-

ANN hybrid model was briefly introduced. The model will be discussed in detail in Chapters 

5 and 7. 
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CHAPTER 5 

MODELLING PART 2: ARTIFICAL NEURAL NETWORK 
COMPONENT 

 

5.1 Artificial neural networks (ANNs) 

5.1.1 Selection of artificial neural networks 

In productivity studies, the effects of different factors on the productivity rates are analysed. 

However, these relationships between the various factors and the productivity rate, and 

especially the factors’ combined effects are complex, thus making modelling challenging 

(Chao and Skibniewski, 1994). Owing to this, productivity studies can benefit from artificial 

neural networks (ANNs). ANNs can be trained to learn from even imperfect datasets and 

provide quick and generalised solutions to a problem (Flood and Kartam, 1994a). ANNs 

can be used for modelling problems in which functional relationships between dependent 

and independent variables are subject to uncertainty, not understood, or may vary with time 

(Di Franco and Santurro, 2020). For all the above-mentioned reasons, they can perform 

better than traditional, statistical methods (Boussabaine, 1996) or even optimisation 

algorithms, which can operate slowly when the problem at hand involves a large number of 

variables (Flood and Kartam, 1994a) or when generalisation and patterns extracted from 

large datasets are the bottom line. Consequently, in this study, ANNs were selected to 

predict the bricklayers’ productivity rate based on the chosen worker and wall 

characteristics, and to determine the effects of these factors on the productivity rate and the 

interrelationships between the factors. 

 

5.1.2 Introduction to artificial neural networks 

Artificial neural networks – similar to the human brain and the central nervous system – are 

able to learn and generalise from examples (Boussabaine and Kirkham, 2008). The 

components of the network are called neurons, processing elements, or nodes (Moselhi et 

al., 1991; Boussabaine, 1996). These neurons are organised into three types of layers: 

input, hidden, and output layers. In any given network, there is one input layer, and one 

output layer, while the number of hidden layers varies. Figure 5.1 shows the topology of an 

ANN model.          
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 Figure 5.1: ANN model architecture 

 

As can be seen in Figure 5.1, the neurons in the network are connected to each other. Each 

of these links have a weight (w) showing the strength of the connections (Boussabaine, 

1996). The input variables are fed into the input layer, then the signal arrives to the nodes 

of the hidden layer through the links, and finally, it is transmitted to the output layer. 

However, the weights of the connections modify the signal that arrives at the output neurons 

(Flood and Kartam, 1994a). Equations (1) and (2) give the value of the signal at the hidden 

and the output layer respectively in the network depicted in Figure 5.1 (Flood and Kartam, 

1994a).  

                                                       ℎ𝑛𝑛 = 𝑓𝑓ℎ ��𝑤𝑤𝑛𝑛,𝑥𝑥
1 ∗ 𝑖𝑖𝑥𝑥 +

𝑖𝑖

𝑥𝑥=1

𝑏𝑏𝑛𝑛1�                                                             (1) 

                                                       𝑜𝑜1 = 𝑓𝑓𝑜𝑜 ��𝑤𝑤1,𝑛𝑛
2 ∗ ℎ𝑛𝑛 +

𝑘𝑘

𝑛𝑛=1

𝑏𝑏12�                                                             (2) 

where f: transfer function, w: weight, b: bias.  

 

The learning method determines how the weights change over the course of the training 

(Boussabaine, 1996).  

Based on what the network has learnt, it will be able to predict the outcome when presented 

with new input data points (Boussabaine and Kirkham, 2008). ANNs work like a black box, 

where the magic happens in the hidden layer, hidden from the user (Boussabaine, 1996; 

Adeli, 2001). This is in contrast with classic statistical analysis, for example, regression 

analysis, where the relationships between the dependent and independent variables are 

apparent. In the case of regression analysis, the class of the relationship needs to be 

determined beforehand, and frequently linear relationships are assumed (Sonmez, 1996). 
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However, in construction management problems, the relationship between the input and 

the output is typically complex due to unknown combined effects (Chao and Skibniewski, 

1994) and ANNs are well-suited to handle such cases. Despite this, interpreting the data 

using both ANNs and statistical analysis can be beneficial as a fuller picture can be 

obtained.  

 

5.2 Application of ANN for productivity analysis 

The steps of developing an ANN model are shown in Figure 5.2. As with any other model, 

it starts with problem definition. Based on that, the input and output variables can be 

determined. These can be continuous, categorical, or, in the case of neuro-fuzzy networks, 

even fuzzy ones.  
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Figure 5.2 Steps of developing an ANN model 

 

The selection of the variables informs the data collection. Patel and Jha (2015) suggest 

the minimum number of data points to be equal to the product of the neurons in each layer. 

Too few training data points can cause underfitting, meaning that the network is not able to 

learn properly (Flood and Kartam, 1994a). For example, in the case of productivity studies, 
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especially if the data collection is done through work studies, it can be challenging to amass 

a substantial dataset. If the variables are scaled differently, normalisation of the data might 

be needed as part of data processing (Flood and Kartam, 1994a, 1994b). The next step 

is data division, where the collected data set is sorted into training and testing data. In 

most of the studies, one of the following training-testing ratios is applied: 80-20%, 75-25%, 

or 70-30%. There could be a third set of data used for validating. In these cases, typically 

half of the testing set becomes the validating set. The number of data subsets is determined 

by the selected training algorithm. Normally, the dataset is divided randomly. However, it is 

essential that all subsets are representative of the collected data (Hagan et al., 2014). In 

addition, Chao and Skibniewski (1994) found that having extremes in the training dataset 

helped the performance of the model. One way to improve the generalisation properties of 

the model is to use k-fold cross-validation (Amari et al., 1997; Adeli and Wu, 1998). This 

means that the dataset is divided into k sets. In each instance, k-1 sets are used for training, 

while the remaining set is used for testing. This is repeated k times to make each set the 

test dataset once. The performance measures are determined as the average of the errors 

produced by each network (Adeli and Wu, 1998). 

After the input and output variables are defined, the network type has to be chosen. One 

option is to select a basic network paradigm, another is to define a new one (Moselhi et al., 

1991). The network can learn in three different ways. In the case of supervised learning, 

both the input and the output dataset is presented to the network, which calculates a 

predicted output for each input set, and then it is compared to the desired output (Flood and 

Kartam, 1994a). Another option is to provide a grade as an output, this is called 

reinforcement learning (Boussabaine, 1996). In the case of unsupervised learning, the 

targeted output dataset is not given to the network (Boussabaine, 1996). For example, self-

organising maps belong to this category (Oral et al., 2016). Based on the direction of the 

connections, there are feedforward and recurrent networks. Feedback loops can be found 

in the latter (Forbes et al., 2004). The networks can also be static or dynamic. In the case 

of the former, the values of the input variables remain constant, while in the case of the 

latter, these values change over time (Flood and Kartam, 1994b). 

Deterministic and stochastic networks can be distinguished, as well. In probabilistic neural 

networks probability density functions are used (Specht, 1990). The advantage of 

probabilistic neural networks is that they can be trained fast on sparse datasets (Sawhney 

and Mund, 2002; Tam et al., 2005). Feedforward backpropagation networks are the most 

commonly used ones, see, for example, El-Gohary et al. (2017), or Tsehayae and Robinson 

Fayek (2016). Moselhi et al. (1991) chose backpropagation for its high accuracy and high 

interpolative performance. Other types include the radial basis used by, for instance, 

Moselhi and Khan (2012). Gerek et al. (2015) compared the performance of these two types 

of networks and found that the radial basis network was more appropriate for their 

bricklaying example. Golnaraghi et al. (2019) investigated the application of the general 
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regression network, and the adaptive neuro-fuzzy inference system in addition to the two 

above-mentioned networks. The backpropagation network suited the formwork assembly 

activity the best as presented in their paper (Golnaraghi et al., 2019). Oral et al. (2016) used 

the self-organising map approach for a ceramic tiling activity. Bailey and Thompson (1990) 

presented the characteristics of many network paradigms. 

In the case of supervised learning, over the course of the training of the network, the 

difference between the targeted and the predicted output is calculated, typically, with the 

help of statistical tools. This will be later used to evaluate the performance of the given 

network configuration. The most commonly used performance measures are the mean 

squared error (or the root-mean-square error) (3), the mean absolute percentage error (4), 

the mean absolute error (5), and the correlation coefficient.  
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where N: number of observations. 

The optimal network configuration can be obtained by following a trial-and-error approach, 

as there are no formal rules concerning this (Boussabaine and Kirkham, 2008; El-Gohary 

et al., 2017). To determine the network architecture, decisions have to be made 

concerning the number of hidden layers and the number of neurons in each of these layers. 

Deep neural networks have numerous hidden layers (Darko et al., 2020). These are able to 

process datasets consisting of multiple arrays, e.g., images. They can learn from and 

extract complex visual patterns from pictures or videos (Darko et al., 2020). However, in the 

case of function fitting problems, shallow networks do suffice (MathWorks United Kingdom, 

no date b). These usually have one or two hidden layers. It is worth starting with one hidden 

layer (Boussabaine and Kirkham, 2008). Two layers, however, can provide greater flexibility 

(Flood and Kartam, 1994a). Having too few hidden neurons in the network might lead to 

underfitting, and produce high error values (Flood and Kartam, 1994a; El-Gohary et al., 

2017). On the other hand, too many hidden nodes can lead to overfitting, in which case the 

error values are low; however, the network cannot work well outside the training patterns 

(Flood and Kartam, 1994a; El-Gohary et al., 2017). At the start, the number of hidden 

neurons can be set at 2/3 or 70-90% of the input neurons, or at the average of the number 

of input and output nodes (Boussabaine and Kirkham, 2008; El-Gohary et al., 2017). Having 

more than 2-2.5 times as many hidden neurons as input nodes might cause instability in the 

network (Patel and Jha, 2015; Ayhan and Tokdemir, 2019). Probabilistic neural networks 
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typically have one hidden layer with as many neurons as training patterns (Sawhney and 

Mund, 2002; Tam et al., 2005). 

The training algorithm or learning rule determines the way in which the weights and biases 

(denoted by w and b respectively in Figures 5.1 and 5.3) are recalculated over the course 

of training (Moselhi et al., 1991). Selection depends on many factors, including the network 

type, and the dataset. In the case of backpropagation networks, the application of the 

generalised delta rule used to be widespread (Bailey and Thompson, 1990; Adeli, 2001). 

Adeli (2001) recommended choosing the adaptive conjugate gradient algorithm instead. 

Several models use the Levenberg-Marquardt algorithm due to it being fast and powerful, 

see, for example, Gerek et al. (2015). Another option is the Bayesian Regularisation 

algorithm suggested for small and noisy datasets, see, for example, Golnaraghi et al. 

(2019). Heravi and Eslamdoost (2015) compared the application of Bayesian Regularisation 

and scaled conjugate gradient learning rule and found that the former has better 

generalisation performance. In the case of radial basis networks, the Gaussian function is 

the most commonly used (Adeli, 2001). For examples, see Gerek et al. (2015) and Moselhi 

and Khan (2012). Multilayer networks’ performance surface may have several local 

minimum points, but it is important to ensure that the global minimum point has been found 

(Hagan et al., 2014). To this end, use can be made of algorithms with adaptive learning 

rates (MathWorks United Kingdom, no date c). Another option is to attempt to smooth out 

the trajectory’s oscillations with momentum (Hagan et al., 2014). 

The output of the neurons is calculated based on the weights of the connections. Then a 

transfer or activation function is applied to this result (Flood and Kartam, 1994a). These 

functions can be linear, threshold, or sigmoid, which is the most widely used (Boussabaine 

and Kirkham, 2008). Portas and AbouRizk (1997) selected a sigmoid, while Tsehayae and 

Robinson Fayek (2016) applied a hyperbolic sigmoid transfer function. Heravi et al. (2015) 

experimented with different combinations of log-sigmoid, tan-sigmoid, and linear functions. 

They found that the log-sigmoid functions performed well with Bayesian Regularisation, 

while the tan-sigmoid function failed with the same algorithm (Heravi and Eslamdoost, 

2015). Gerek et al. (2015) used saturating linear and linear activation functions in their two-

layer feedforward network. 

After making the decisions regarding the initial settings of the network, the training and the 

testing could start. Next comes the evaluation of the performance of the network 

configuration using the selected measures. If the performance is not satisfactory, there are 

two options. If the performance is below expectations, the network attributes need to be 

changed and the training and testing run again. The modifications are preferably made one 

at a time in order for the effect of the change to be able to be observed. The other option, 

in the case of better performing networks, is to retrain the network with the same 

configuration – i.e., without changing its properties – to see if using different weights 

during training could help enhance the performance. This cycle continues until the optimal 
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network configuration is found; the calibration is ready. When that happens, the network 

is ready, it can be used with new datasets to predict solutions and values (see Figure 5.2). 

   

5.3 ANN for bricklaying 

The previous section described the process of creating an ANN model. This section 

explains the decisions made in the case of the model introduced in this study. The steps of 

the flowchart in Figure 5.2 are followed in this section, as well. 

The reason for developing this ANN model is to calculate the productivity rates based on 

the selected factors and to see how these factors affect the bricklayers’ productivity. In this 

case, only those factors that can be known during the planning phase of a construction 

project are considered, particularly, worker and wall characteristics. These factors, which 

include, for example, the experience of the bricklayers and the type of brick used for the 

wall, comprise the input neurons of the ANN model. The output neuron is the forecasted 

productivity rate. Figure 5.3 shows an example for an ANN defined in this research. In this 

case there are two hidden layers, each comprised of five hidden neurons.  

 

 
Figure 5.3 Example for bricklaying ANN model architecture (w: weight, b: bias) 

 

The data collection took place at two construction projects by conducting a traditional work 

study. When the productivity rates were measured, note was made of the bricklayer working 

on the course, and the wall section where they worked. Based on these measurements, the 

data table was produced. In every row of this table, there is one productivity rate measured 

in bricks/hour together with the corresponding worker and wall attributes. There are five 

operative characteristics: quality, perceived speed, knowledge, independence, and 

experience, which are ordinal variables measured on a scale of one to three. The values of 

the first four attributes were determined by the bricklayers’ supervisors, while the factor 

experience reflects the number of years the bricklayers spent in construction. There are two 
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wall attributes: course difficulty and brick type, which are ordinal variables measured on a 

scale of one to three. The values of these factors were determined based on the 

observations and the drawings. Table 5.1 shows the selected factors and their scales.  A 

more detailed description of the data collection can be found in Section 3.5, while the 

variables are explained in more detail in Section 4.1.2. 

 

Factor/Scale 1 2 3 
Quality Acceptable Good Excellent 

Perceived speed Slow Normal Fast 

Knowledge Need to be 

improved 

Adequate Excellent 

Independence No Medium Yes 

Experience Limited Medium Substantial 

Course difficulty Easy Medium Difficult 

Brick type Red Gray Blue 
Table 5.1. Selected factors and their scales 

 

Data processing included producing the data table based on the measurements obtained 

during data collection. This is explained in more detail in Section 3.6. The data table was 

the basis of determining the input and target matrices. Since the variables were scaled 

differently, normalisation of the data was needed (Flood and Kartam, 1994a, 1994b).  

The next step was data division. In order to improve the generalisation properties of the 

model, 10-fold cross-validation was used. This meant that the dataset was divided into 10 

sets, which were equal in numbers as much as possible. In the case of each fold, one of 

the sets was used for testing, while the other nine were used for training. 

Following the other branch in Figure 5.2, the selection of the network type came after the 

problem definition. The above-mentioned input variables are static, they do not change over 

time. The target output was measured; therefore, the training of the network is supervised. 

There are no feedback loops in the network, a feedforward network is defined. Due to its 

accuracy and high interpolative performance, backpropagation was selected. 

The mean squared error (mse), the mean absolute percentage error (mape), and the 

correlation coefficient (R) were used to evaluate the network configurations. In the case of 

each fold, the following steps needed to be followed, and the best possible configurations 

found. 

One of the chosen network configurations can be seen in Figure 5.3. There are seven input 

neurons (one for each input variable mentioned before) and one output neuron (the 

forecasted productivity rate). The example shows two hidden layers. Configurations with 

one hidden layer were also investigated. Based on the recommendations mentioned in the 
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previous section, the number of hidden neurons was chosen between 5 and 20. In the case 

of two hidden layers, 5 and 10 neurons per layer were chosen. 

In this research, altogether six training algorithms were selected. The most frequently used 

Levenberg-Marquardt (lm) algorithm was the first choice for its speed and power. The 

Bayesian Regularisation (br) algorithm recommended for noisy and small datasets was 

selected also for preventing overfitting. Two training algorithms (gradient descent with 

adaptive learning rate backpropagation (gda) and gradient descent with momentum and 

adaptive learning rate backpropagation (gdx)) with adaptive learning rates were chosen, as 

well, for their ability to enhance performance by amending the learning rate. The Broyden-

Fletcher-Goldfarb-Shanno quasi-Newton backpropagation (bfg) was selected for its speed 

(MathWorks United Kingdom, no date a). The scaled conjugate gradient (scg) algorithm 

was chosen for its efficiency (Hagan et al., 2014).  

Corresponding to the training algorithms, activation functions needed to be chosen. Sigmoid 

functions are the most commonly used and best resemble the behaviour of biological 

neurons (Boussabaine and Kirkham, 2008). They are advised in the case of 

backpropagation by Bailey and Thompson (1990). Therefore, in this study, log-sigmoid 

(logsig) and tangent sigmoid (tansig) activation functions were selected for the first, or in 

the case of two hidden layers, the first two layers, and a linear (purelin) transfer function 

was applied for the final layer. 

In the case of each fold, the number of hidden layers and neurons, the training algorithms, 

and transfer functions were changed until the best performing networks were found. Then 

the average of the performance measures of the ten selected networks was calculated. 

 

5.4 Finding the most suitable ANN 

Numerous different ANNs were created with the help of the MATLAB R2021a software 

running on a Lenovo laptop with 8 GB of RAM, Intel®Core™ i5-7200U processor on a 64-

bit Windows 10 Home operating system. MATLAB was chosen because it can handle 

developing ANNs, is user-friendly, and the full version was available at the university.   

The best performing network configurations of each fold are listed in Table 5.2. For example, 

the best network for fold #1 has an input layer of seven neurons for the seven factors, one 

hidden layer with five neurons, and one output neuron for the forecasted productivity rate. 

The chosen training algorithm is the scaled conjugate gradient. The transfer functions 

applied to the output of layers 1 (input), 2 (hidden layer) are the tangent sigmoid and the 

linear functions, respectively. The correlation coefficient of the training data subset is 0.82, 

while that of the test data subset is 0.58. For the entire dataset, the R value is 0.79. The 

mean squared error for the entire dataset is 0.0647. The mean absolute percentage error 

for the entire dataset is 21.21%, for the training dataset, it is 20.55%, while for the test 

dataset it is 28.18%. It took the software 2 seconds to calculate these results. 
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Fold 

Network 
architecture 

Training 
algorithm 

Transfer function 
Correlation 

coefficient, R 

Mean 
squared 

error 
Mean absolute % error 

Training 
time, [s] 

Number 
of 

hidden 
layers 

Number 
of 

neurons/ 
hidden 
layer 

Layer 
1 

Layer 
2 

Layer 
3 

Training Test All Dataset Dataset Training Test 

1 1 5 scg tansig purelin - 0.82 0.58 0.79 0.0647 21.21 20.55 28.18 2 

2 1 5 lm tansig purelin - 0.83 0.47 0.79 0.0653 20.76 18.97 42.22 <1 

3 1 5 lm tansig purelin - 0.77 0.89 0.80 0.0638 24.01 22.57 36.61 <1 

4 1 5 lm tansig purelin - 0.80 0.81 0.79 0.0645 24.42 22.97 34.31 <1 

5 2 5 lm tansig tansig purelin 0.81 0.22 0.76 0.0743 25.28 22.78 50.75 <1 

6 1 5 lm tansig purelin - 0.81 0.67 0.79 0.065 21.49 21.55 21.06 <1 

7 1 5 lm tansig purelin - 0.81 0.67 0.79 0.0654 21.37 21.98 15.66 <1 

8 1 5 lm tansig purelin - 0.80 0.80 0.79 0.0644 21.25 21.63 18.15 <1 

9 1 5 lm tansig purelin - 0.80 0.77 0.80 0.0638 21.79 22.55 12.51 <1 

10 1 5 lm tansig purelin - 0.81 0.41 0.80 0.0636 23.33 22.49 29.47 <1 

average       0.81 0.63 0.79 0.0655 22.49 21.80 28.89  
Table 5.2 Summary of the most suitable network configurations in each fold (gray background: fold selected for further analysis)  
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The average mean absolute percentage error across the 10 folds is above 20%. This is 

higher than ideal, therefore the networks for folds 7, 8, and 9, which had the lowest mean 

absolute percentage error, were chosen for further analysis. Figures 5.4, 5.6, and 5.8 show 

the productivity rates predicted by the model and the observed productivity rates. The 

orange 45-degree line depicts the ideal situation where the output and target values are 

equal. The further away the points are from this line, the higher the error, i.e., the difference 

between the predicted and target values. Figures 5.5, 5.7, and 5.9 show the error frequency 

histograms of the three selected networks. In each case, the datapoints which produced an 

error in the top 5% were checked. Based on this, six datapoints were finally removed from 

the dataset in order to improve the performance of the model. The excluded datapoints – 

#62, 78, 79, 81, 82, and 84 – are shown in red in Figures 5.4, 5.6, and 5.8.  

 

 
Figure 5.4 Predicted and observed productivity rates based on Fold #7 
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Figure 5.5. Frequency of absolute errors of Fold #7 

 

 
Figure 5.6 Predicted and observed productivity rates based on Fold #8 
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Figure 5.7 Frequency of absolute errors of Fold #8 

 

 
Figure 5.8 Predicted and observed productivity rates based on Fold #9 
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Figure 5.9 Frequency of absolute errors of Fold #9 

 

As a result of removing six datapoints, the final dataset consisted of 123 datapoints. The 

distribution of datapoints over the values of each factor can be seen in Table 5.3.   

 

Factor/Scale 1 1.5 2 2.5 3 
Quality (Q) 24 0 36 8 55 

Perceived speed (PS) 10 0 36 18 59 

Knowledge (K) 24 14 24 12 49 

Independence (I) 14 14 26 16 53 

Experience (E) 22 14 43 4 40 

Course difficulty (CD) 83 0 34 0 6 

Brick type (BT) 61 0 38 0 24 
Table 5.3 Number of datapoints at each value of the factors in the final dataset 

 

After the final dataset was determined, it was again divided into ten folds, and the same 

process was followed as described before. Hundreds of feedforward networks were created 

with seven input neurons for the seven input variables listed in Table 5.1 and one output 

neuron for the forecasted productivity rate. Different hidden layer configurations were 

tested: 5 to 20 hidden neurons in one hidden layer and 5 or 10 neurons in two hidden layers. 

Six training algorithms were selected: Levenberg-Marquardt (lm) algorithm (with various 

learning rates and momentum settings), Bayesian Regularisation (br) algorithm, gradient 

descent with adaptive learning rate backpropagation (gda), gradient descent with 

momentum and adaptive learning rate backpropagation (gdx), Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton backpropagation (bfg), and scaled conjugate gradient (scg) 
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algorithm. Linear transfer function was chosen for the final layer, and mostly the tangent 

sigmoid (tansig) function was used for the previous layers; however, the log-sigmoid (logsig) 

and linear activation functions were also tested for those layers, as well. By using the above-

mentioned settings, many configurations were tested for each fold. The best performing 

network for each fold can be seen in Table 5.4. Both the average correlation coefficient and 

the average mean absolute error improved in comparison with the values shown in Table 

5.2. 

The next step was to find the overall best performing network that would be part of the 

hybrid DES-ANN model. The top 20 are listed in ascending order of the mean absolute error 

of the test dataset in Table 5.5. All of them are from fold #1, as that had the lowest mean 

absolute percentage error. It can be seen that most of the networks listed have the same 

correlation coefficients and error values, which were chosen as the performance measures 

to evaluate the networks by. Therefore, the results of the sensitivity analysis were also used 

to determine the most appropriate network, which would be part of the model. 
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Fold 

Network 
architecture 

Training 
algorithm 

Transfer function 
Correlation 

coefficient, R 

Mean 
squared 

error 
Mean absolute % error 

Training 
time, [s] 

Number 
of 

hidden 
layers 

Number 
of 

neurons/ 
hidden 
layer 

Layer 
1 

Layer 
2 

Layer 
3 

Training Test All Dataset Dataset Training Test 

1 1 20 gda tansig purelin - 0.86 0.83 0.86 0.0381 11.06 11.87 1.21 3 

2 1 5 scg tansig purelin - 0.87 0.48 0.86 0.038 12.60 13.24 6.92 1 

3 1 5 lm tansig purelin - 0.87 0.66 0.85 0.0384 14.95 13.12 31.11 <1 

4 2 10 gda tansig tansig purelin 0.85 0.9 0.85 0.0386 13.64 13.00 17.99 1 

5 1 15 gda tansig purelin - 0.87 0.54 0.85 0.0385 13.62 12.49 25.97 1 

6 2 5 gda tansig tansig purelin 0.86 0.52 0.85 0.0404 14.57 13.68 21.73 2 

7 2 5 gda tansig tansig purelin 0.87 0.65 0.85 0.0386 11.89 11.91 11.55 1 

8 2 5 gda tansig tansig purelin 0.82 0.93 0.84 0.0417 14.36 14.20 15.69 1 

9 1 20 scg tansig purelin - 0.86 0.84 0.85 0.0412 11.47 13.59 10.97 <1 

10 1 15 gda tansig purelin - 0.86 0.84 0.85 0.0387 14.20 13.25 19.54 1 

average       0.86 0.72 0.85 0.0392 13.24 13.04 16.27  
Table 5.4 Summary of the most suitable network configurations in each fold (gray background: fold selected for further analysis) 
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# Fold 

Network 
architecture 

Training 
algorithm 

Transfer function 
Correlation 

coefficient, R 

Mean 
squared 

error 
Mean absolute % error 

Training 
time, [s] 

Number 
of 

hidden 
layers 

Number 
of 

neurons/ 
hidden 
layer 

Layer 
1 

Layer 
2 

Layer 
3 

Training Test All Dataset Dataset Training Test 

1 1 2 5 gdx tansig tansig purelin 0.86 0.83 0.85 0.0392 11.81 12.79 0.0520 2 

2 1 2 10 gdx tansig tansig purelin 0.86 0.82 0.86 0.0382 11.34 12.27 0.0756 2 

3 1 1 15 gdx tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1781 2 

4 1 1 15 scg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1831 <1 

5 1 1 10 scg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1832 <1 

6 1 1 20 scg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1832 <1 

7 1 2 5 bfg tansig tansig purelin 0.86 0.82 0.86 0.0383 11.38 12.34 0.1833 <1 

8 1 1 15 bfg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 0.18 0.1833 <1 

9 1 1 20 bfg tansig purelin - 0.86 0.82 0.85 0.0383 11.38 12.34 0.1834 <1 

10 1 2 5 lm tansig tansig purelin 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

11 1 2 10 bfg tansig tansig purelin 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

12 1 1 10 lm tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

13 1 1 15 lm tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 
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# Fold 

Network 
architecture 

Training 
algorithm 

Transfer function 
Correlation 

coefficient, R 

Mean 
squared 

error 
Mean absolute % error 

Training 
time, [s] 

Number 
of 

hidden 
layers 

Number 
of 

neurons/ 
hidden 
layer 

Layer 
1 

Layer 
2 

Layer 
3 

Training Test All Dataset Dataset Training Test 

14 1 1 20 lm tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

15 1 1 5 lm tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 1 

16 1 2 10 lm tansig tansig purelin 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

17 1 1 10 bfg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 <1 

18 1 1 5 bfg tansig purelin - 0.86 0.82 0.86 0.0383 11.38 12.34 0.1834 1 

19 1 2 5 scg tansig tansig purelin 0.86 0.82 0.86 0.0383 11.38 12.34 0.1837 <1 

20 1 1 10 gdx tansig purelin - 0.86 0.82 0.86 0.0383 11.35 12.32 0.3344 2 
Table 5.5 The best performing network configurations (gray background: network selected for further analysis)
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5.5 Sensitivity analysis 

To understand the effect of the input variables on the output variable, i.e., the productivity 

rate, sensitivity analysis was performed. This meant that at one time one input variable’s 

value was changed, while all others were fixed at their mean value, and this was repeated 

seven times for the seven factors (Sonmez, 1996; Sonmez and Rowings, 1998). 

In the first case, the given input variable’s value was chosen to be equal to its minimum 

value (1), then to its maximum value (3), and the output values were recorded. The 

difference between the two output values was also calculated. This was performed in the 

case of all the networks listed in Table 5.5. Some of them produced negative output, which 

is not acceptable as the productivity rate must be a positive number. Therefore, these 

networks were discarded. After this elimination, the first three networks – #4, #9, and #11 

in Table 5.5 – were kept and used for further analysis. The main features of networks A, B, 

and C can be seen in Table 5.6. 

 

Network 

Network 
architecture 

Training 
algorithm 

Transfer function 

Number 
of 

hidden 
layers 

Number 
of 

neurons/ 
hidden 
layer 

Layer 
1 

Layer 
2 

Layer 
3 

Network A 1 15 scg tansig purelin - 

Network B 1 20 bfg tansig purelin - 

Network C 2 10 bfg tansig tansig purelin 
Table 5.6 The final three networks 

 

Table 5.7 contains the results of the first round of the sensitivity analysis for networks A to 

C. The table shows the productivity rates calculated in the given network. For example, in 

the case of quality, the output of network A was 112.7 bricks/h, when the value of quality 

was set at 1, while the values of all other factors were their mean values, and the output 

was 153.3 bricks/h, when the value of quality was 3, while that of the other factors remained 

the same. The difference between these two output values is 40.6 bricks/h, which can be 

seen in the fourth column. 
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Table 5.7 Results of sensitivity analysis for networks A-C (productivity rates in bricks/h) 

 

While the values may be different, it can be seen that in the case of experience, course 

difficulty, and brick type, the differences by all three networks have the same sign. These 

factors are coloured in gray in Table 5.7. The sign of the difference value shows that with 

experience increasing, the productivity rate also increases, while in the case of course 

difficulty and brick type, the effect is the opposite. For example, the more difficult the course, 

the lower the productivity rate. The first four factors provided more varied results. Further 

analysis was needed. 

In the second round of sensitivity analysis, basically the same principle was used as in the 

first one: only one factor’s values were changed, while the values of the other factors were 

kept at their mean values. However, in this case, the value of the selected factor was 

changed by 0.1 increments between 1 and 3 to see how the productivity rate changes due 

to the changes in the chosen factor. The output of the three networks were depicted in 

graphs, which can be seen in Figures 5.10 through 5.16. 

 

 
Figure 5.10 Quality-productivity rate 

Factor Network A Network B Network C 
Output for 

diff. 
Output for 

diff. 
Output for 

diff. min. max. min. max. min. max. 
Q 112.7 153.3 40.6 135.9 102.1 -33.8 106.3 138.8 32.5 

PS 202.4 146.8 -55.6 111.0 135.3 24.3 112.7 116.9 4.2 

K 200.9 93.9 -107.0 162.9 131.7 -31.2 106.1 156.2 50.1 

I 47.9 112.6 64.7 89.3 129.1 39.8 148.0 103.4 -44.6 

E 76.6 179.6 103.1 17.3 153.5 136.2 113.1 178.1 65.0 

CD 123.1 35.2 -87.9 133.2 37.1 -96.1 168.3 96.0 -72.3 

BT 128.9 126.5 -2.3 190.2 81.1 -109.1 102.1 38.7 -63.4 
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Figure 5.10 shows how the productivity rate changes if the value of the quality factor is 

changed between 1 and 3. Networks A and C provided similar results suggesting that the 

productivity rate increases as the value of quality increases. 

 

 
Figure 5.11 Perceived speed-productivity rate 

 

In the case of perceived speed, – as can be seen in Figure 5.11 – the output of networks B 

and C were close showing the same trend of a slight increase in productivity as the factor’s 

value increases.   

 

 
Figure 5.12 Knowledge-productivity rate 

 

For the knowledge factor, the outputs are more varied; however, networks A and B suggest 

a decrease in the productivity rate as knowledge increases (see Figure 5.12). 
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Figure 5.13 Independence-productivity rate 

 

In the case of independence (see Figure 5.13), similar outputs were provided by all three 

networks in the right side of the graph. Networks A and B show an increasing trend. 

 

 
Figure 5.14 Experience-productivity rate 

 

As could be seen in Table 5.7 and here in Figure 5.14, the productivity rates provided by all 

three networks show an increase as experience increases. Networks A and C produced 

more similar results.  
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Figure 5.15 Course difficulty-productivity rate 

 

In the case of course difficulty, the output of networks A and B were close showing the same 

trend of decreasing productivity as the factor’s value increases (see Figure 5.15). 

 
Figure 5.16 Brick type-productivity rate 

 

For the brick type factor, the outputs shown in Figure 5.16 are also more varied; however, 

all three networks suggest a decrease in the productivity rate as the value of brick type 

increases. 

 

5.6 Chapter summary 

This is the second of three chapters discussing the developed hybrid DES-ANN model. The 

first one was Chapter 4, which provided an overview of the model, while Chapter 7 will 

discuss the DES part of the model and the link between the two components. In this chapter, 

first, artificial neural networks were introduced describing the concept and the general 

workings of the networks. Then the framework developed for productivity modelling with 

ANN was presented. The steps of creating an ANN model were explained in detail, showing 

the options that need to be considered. In the next section, the choices made for the ANN 

component of the model were explained using the framework. Hundreds of feedforward 
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networks were created, which had different architecture (one or two hidden layers, varying 

number of hidden neurons), were trained by different backpropagation learning algorithms 

(altogether six different ones were selected) and used different transfer functions 

(combinations of various sigmoid and linear functions were chosen). The data table was 

divided into 10 equal sets for the 10-fold validation, which meant that each time the network 

was trained using 9 folds and tested using the remaining fold. This was repeated 10 times 

until all folds were used for testing once. The networks were ranked based on the selected 

performance measures (mean squared error, mean absolute percentage error, and 

correlation coefficient). Since the accuracy of the model was not ideal, six datapoints were 

removed from the data table, and then hundreds of networks were created the same way 

as before. These were ranked and the three best performing ones were chosen for 

sensitivity analysis. The output of the analysis was used to analyse the effects of the factors 

on the productivity rate.  
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CHAPTER 6 

STATISTICAL ANALYSIS OF THE COLLECTED PRODUCTIVITY 
DATA 

 

6.1 The data table and descriptive statistics 

The aim of the statistical analysis is to determine the effect of the following factors on the 

productivity rate of bricklaying works: quality (Q), perceived speed (PS), knowledge (K), 

independence (I), experience (E), course difficulty (CD), and brick type (BT). These were 

described in detail in Section 4.1.2. 

The data table used for the analyses contains 123 data points for productivity rates and the 

corresponding values of the above-mentioned factors. The dataset on which the analyses 

were performed was the same as the one used to for the artificial neural network component 

of the model. The process of obtaining the dataset was described in Section 5.4. The 

descriptive statistics for the productivity rates can be seen in Table 6.1 and the histogram 

in Figure 6.1. 

 

 Productivity Rate 
Number of data points 123 

Minimum [bricks/h] 36.89 

Maximum [bricks/h] 283.5 

Mean [bricks/h] 114.8 

Standard Deviation 

[bricks/h] 
46.62 

Variance [(bricks/h)2] 2174 

Skewness  0.926 

Standard Error of 

Skewness 
0.218 

Kurtosis 1.197 

Standard Error of Kurtosis 0.433 
Table 6.1 Descriptive statistics for productivity rate 
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Figure 6.1 Histogram of productivity rate [bricks/h] 

 

Table 6.2 contains the list of the factors with their scales explained. Moreover, it shows the 

abbreviations used later in this chapter. For example, Q1 stands for acceptable quality, 

when the value of the quality factor equals 1. In the case of some factors, there are half 

values as well, such as Q2.5. This is the average of Q2 and Q3. More details on this can 

be found in Section 3.6. 

 

Factor/Scale 1 2 3 
Quality (Q) Acceptable (Q1) Good (Q2) Excellent (Q3) 

Perceived speed 

(PS) 
Slow (PS1) Normal (PS2) Fast (PS3) 

Knowledge (K) 
Need to be 

improved (K1) 
Adequate (K2) Excellent (K3) 

Independence (I) No (I1) Medium (I2) Yes (I3) 

Experience (E) Limited (E1) Medium (E2) Substantial (E3) 

Course difficulty 

(CD) 
Easy (CD1) Medium (CD2) Difficult (CD3) 

Brick type (BT) Red (BT1) Gray (BT2) Blue (BT3) 
Table 6.2 Factors and their scales 

 

Table 6.3 shows the number of datapoints for each value of the factors. Even though every 

effort was made to have an equal number of observations of the various bricklayers and 
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wall sections, in the final data table the number of datapoints per factor group is uneven. 

This was explained in detail in Section 3.6.    

 

Factor/Scale 1 1.5 2 2.5 3 
Quality (Q) 24 0 36 8 55 

Perceived speed (PS) 10 0 36 18 59 

Knowledge (K) 24 14 24 12 49 

Independence (I) 14 14 26 16 53 

Experience (E) 22 14 43 4 40 

Course difficulty (CD) 83 0 34 0 6 

Brick type (BT) 61 0 38 0 24 
Table 6.3 Number of datapoints for each value of the factors 

 

The level of measurement is different for different variables. While the productivity rate, the 

dependent variable, can be considered continuous, the independent variables, the factors, 

are ordinal. 

The analyses were performed according to Field (2009) and using IBM SPSS Statistics 26  

and MS Excel 2016 software. The level of significance is 0.05, unless stated otherwise. 

Table 6.4 contains the most common abbreviations and notations used in the coming tables. 

 

Abbreviation Meaning 
Sig. significance 

df degrees of freedom 

t result of t-test, t-value 

R2 coefficient of determination 
Table 6.4 Common abbreviations 
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Figure 6.2 Steps of the statistical analysis 

 

Figure 6.2 shows the statistical analysis performed and detailed in this chapter. The tests 

listed in the top row were run in order for the questions in the middle row to be answered. 

The bottom row contains the output of the analyses. The coming sections describe the steps 

in detail.  

 

6.2 Normality and homogeneity 

For parametric tests, it needs to be determined whether the variables follow a normal 

distribution, and their variances are homogenous between the categories of the factors. 

These assumptions of normality and homogeneity need to be met in order for the F statistic, 

the output of the tests, to be reliable. 

The productivity rates at every level of each variable were checked for normality because 

for the tests, this is what matters, and not the overall normality. The analyses included 

running the Kolmogorov-Smirnov and Shapiro-Wilk tests and checking the skewness and 

kurtosis. Table 6.6 shows the results of the aforementioned tests. In the case of the 

Kolmogorov-Smirnov and Shapiro-Wilks tests, if the test is significant, the scores are 

significantly different from the normal distribution. In most cases, the two tests give the same 

results. When they differ, the final decision can be made based on the other skewness and 

kurtosis values and the histograms. 

In the case of skewness and kurtosis, first, standardised z-scores were calculated based 

on (1) and (2). 
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                                                          𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑆𝑆 − 0

𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
                                                                 (1)  

                                                            𝑧𝑧𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =
𝐾𝐾 − 0

𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
                                                                  (2) 

where S: skewness, SEskewness: standard error of skewness, K: kurtosis, SEkurtosis: standard 

error of kurtosis. 

 

Then these values were compared to the value of the normal distribution (zcritical). If the 

absolute value of zskewness or zkurtosis is greater than zcritical=1.96, then the value is significant, 

meaning that the distribution is not normal. Tables 6.5 shows the results of these tests, as 

well. 

Based on the above tests, it can be concluded that the following categories are significantly 

non-normal: Q3, PS3, K3, I3, E3, CD2. In these cases, the normality condition for parametric 

tests is not met. 
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 Kolmogorov-Smirnov Shapiro-Wilk Skewness Kurtosis Final 

Factor D Sig. Normal D Sig. Normal Skewness 
Standard 
error of 

skewness 
zskewness Normal Kurtosis 

Standard 
error of 
kurtosis 

zkurtosis Normal Normal 

Q1 0.160 0.112 yes 0.915 0.046 no 0.618 0.472 1.309 yes -0.755 0.918 -0.822 yes yes 

Q2 0.092 0.200 yes 0.985 0.885 yes 0.071 0.393 0.181 yes -0.150 0.768 -0.195 yes yes 

Q2.5 0.185 0.200 yes 0.907 0.335 yes -0.625 0.752 -0.831 yes -0.685 1.481 -0.463 yes yes 

Q3 0.173 0.000 no 0.925 0.002 no 0.951 0.322 2.953 no 0.431 0.634 0.680 yes no 

PS1 0.231 0.139 yes 0.858 0.072 yes -1.160 0.687 -1.689 yes 3.604 1.334 2.702 no yes 

PS2 0.094 0.200 yes 0.971 0.451 yes 0.372 0.393 0.947 yes -0.440 0.768 -0.573 yes yes 

PS2.5 0.103 0.200 yes 0.970 0.799 yes -0.042 0.536 -0.078 yes -0.736 1.038 -0.709 yes yes 

PS3 0.140 0.006 no 0.947 0.012 no 0.776 0.311 2.495 no 0.150 0.613 0.245 yes no 

K1 0.160 0.112 yes 0.915 0.046 no 0.618 0.472 1.309 yes -0.755 0.918 -0.822 yes yes 

K1.5 0.137 0.200 yes 0.948 0.533 yes 0.044 0.597 0.074 yes -1.112 1.154 -0.964 yes yes 

K2 0.104 0.200 yes 0.933 0.114 yes 0.793 0.472 1.680 yes 0.091 0.918 0.099 yes yes 

K2.5 0.186 0.200 yes 0.916 0.258 yes 0.053 0.637 0.083 yes -1.322 1.232 -1.073 yes yes 

K3 0.201 0.000 no 0.877 0.000 no 1.457 0.340 4.285 no 2.551 0.668 3.819 no no 

I1 0.189 0.190 yes 0.915 0.185 yes 0.114 0.597 0.191 yes -1.463 1.154 -1.268 yes yes 

I1.5 0.137 0.200 yes 0.948 0.533 yes 0.044 0.597 0.074 yes -1.112 1.154 -0.964 yes yes 

I2 0.129 0.200 yes 0.932 0.086 yes 0.800 0.456 1.754 yes -0.790 0.887 -0.891 yes yes 
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 Kolmogorov-Smirnov Shapiro-Wilk Skewness Kurtosis Final 

Factor D Sig. Normal D Sig. Normal Skewness 
Standard 
error of 

skewness 
zskewness Normal Kurtosis 

Standard 
error of 
kurtosis 

zkurtosis Normal Normal 

I2.5 0.127 0.200 yes 0.961 0.689 yes -0.517 0.564 -0.917 yes 0.141 1.091 0.129 yes yes 

I3 0.189 0.000 no 0.889 0.000 no 1.390 0.327 4.251 no 2.532 0.644 3.932 no no 

E1 0.109 0.200 yes 0.970 0.709 yes 0.388 0.491 0.790 yes -0.328 0.953 -0.344 yes yes 

E1.5 0.137 0.200 yes 0.948 0.533 yes 0.044 0.597 0.074 yes -1.112 1.154 -0.964 yes yes 

E2 0.100 0.200 yes 0.978 0.571 yes 0.384 0.361 1.064 yes 0.426 0.709 0.601 yes yes 

E2.5 0.281 -  0.877 0.326 yes 0.317 1.014 0.313 yes -4.067 2.619 -1.553 yes yes 

E3 0.184 0.002 no 0.916 0.006 no 0.994 0.374 2.658 no 0.534 0.733 0.729 yes no 

CD1 0.102 0.032 no 0.972 0.070 yes 0.545 0.264 2.064 no 0.104 0.523 0.199 yes yes 

CD2 0.170 0.014 no 0.908 0.008 no 1.083 0.403 2.687 no 1.130 0.788 1.434 yes no 

CD3 0.227 0.200 yes 0.870 0.228 yes -0.702 0.845 -0.831 yes -1.666 1.741 -0.957 yes yes 

BT1 0.082 0.200 yes 0.969 0.122 yes 0.619 0.306 2.023 no 0.197 0.604 0.326 yes yes 

BT2 0.115 0.200 yes 0.973 0.474 yes 0.084 0.383 0.219 yes 0.064 0.750 0.085 yes yes 
Table 6.5 Results of the normality tests (D: test statistic, gray background: non-normal distribution)  
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Besides normality, the homogeneity of variance should also be checked. Two tests were 

performed to this end: Levene’s and Hartley’s. 

Table 6.6 shows the results of Levene’s test. If the test is significant, the variances of 

different categories are significantly different, they are not homogeneous. 

 

Factor F df1 df2 Sig. Homogenous 
Q 7.058 3 119 0.000 no 

PS 6.766 3 119 0.000 no 

K 0.362 4 118 0.835 yes 

I 0.798 4 118 0.529 yes 

E 3.017 4 118 0.021 no 

CD 2.473 2 120 0.089 yes 

BT 9.158 2 120 0.000 no 
Table 6.6 Results of Levene’s test (F: Levene test statistic, gray background: heterogeneity of 

variance) 

To double-check the results, Hartley’s Fmax was also calculated for all factors. This is the 

ratio of the biggest and the smallest variance per factor. This value is then compared to a 

critical value, which is determined based on the number of variances compared and the 

number of cases per category. Then the Fmax values were compared to the critical values. 

If the Fmax value is greater than the critical, it is significant, meaning that the variances are 

heterogeneous. Since the numbers of cases in each group are different, the critical values 

were calculated for both the number of cases in the category with the smallest and also with 

the biggest variance. The Fmax values were either greater or smaller than both of these 

values for all factors, except for the course difficulty. Here the Fmax value was between the 

calculated critical values. The critical value determined for the smallest variance was high    

due to the low number of cases for CD3. The results are summarised in Table 6.7. The 

critical column shows the smaller value out of the two calculated ones in the homogenous 

cases, and the greater one, in the heterogeneous ones.  

Factor 
Variance Hartley’s Fmax 

Critical Homogeneous 
1 1.5 2 2.5 3 biggest/smallest 

Q 2080 - 603 2385 3275 5.434 2.502 no 

PS 192 - 1298 1460 3111 16.189 6.310 no 

K 2080 1111 1992 2372 2526 2.274 2.336 yes 

I 2201 1111 2612 1382 2576 2.351 3.160 yes 

E 828 1111 1767 987 3261 3.938 3.464 no 

CD 1692 - 3236 - 330 9.806 10.800 yes 

BT 2786 - 1075 - 512 5.444 2.785 no 
Table 6.7 Results of Hartley’s test (gray background: heterogeneity of variance) 
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Based on the above tests, it can be concluded that the variances are significantly different 

in the case of the following factors: quality, perceived speed, experience, and brick type. 

The results of Levene’s and Hartley’s tests are the same, the homogeneity of variance 

condition of parametric tests is only met in the case of knowledge, independence, and 

course difficulty.     

 

6.3 One-way analysis of variance (ANOVA) 

ANOVA is used to determine whether the selected factors have an influence on the 

dependent variable, i.e., the productivity rate. It is a parametric test; therefore, it assumes 

a normal distribution. In the case of unequal sample sizes, ANOVA is also sensitive to the 

violation of the homogeneity of variance. That is why the tests of the previous chapter were 

performed. From the results we can conclude that while the scores of some categories 

follow a normal distribution, and the variances of the groups in some factors are 

homogenous, others are non-normal and heterogeneous. Due to this, both parametric and 

non-parametric tests were performed to determine whether the productivity rate is affected 

by the factors. In the case of both types of tests, the categories within one factor were 

compared to each other. 

The error bars showing the 95% confidence intervals for the different groups of each factor 

can be seen in Figure 6.3. The mean productivity rate values for every category are labelled.  
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Figure 6.3 Error bars 

 

Table 6.8 summarises the tests that were performed and the main results. If the variances 

of the categories are significantly different from each other, Welch’s F has to be checked. If 

this is significant, that means that the factor has an effect on the dependent variable, which 

is now the productivity rate. This is the case for experience and brick type. Table 6.10 

contains the results of Welch’s test. The effect size was calculated according to (3) (Horn, 

2006). The effects were determined based on Table 6.10. For perceived speed, the Welch 

F was not significant; however, the Brown-Forsythe F was. This can be due to an extreme 

mean. The implications of this are the same as those of Welch’s F being significant. Table 

6.11 contains the results for this test. The effect sizes were calculated according to (3) and 

the effects were determined based on Table 6.9. 
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Factor Variances 
ANOVA/Robust 

tests 
Significant contrasts 

Significant 
post-hoc 

tests  

Q 
significantly 

different 

Welch’s, Brown-

Forsythe’s: not 

significant 

  

PS 
significantly 

different 

Welch’s: not 

significant 

Brown-Forsythe’s: 

significant 

 PS3 vs. 

PS1&PS2&PS2.5 

 PS2.5 vs. PS3 

 

K 
not 

significantly 

different 

ANOVA: not 

significant 
 K2 vs. K2.5&K3  

I 
not 

significantly 

different 

ANOVA: not 

significant 
  

E 
significantly 

different 

Welch’s, Brown-

Forsythe’s: 

significant 

 E3 vs. 

E1&E1.5&E2&E2.5 

 E2 vs. E1&E1.5 

 E1.5 vs. E1 

 E1 vs. 

E1.5&E2&E2.5&E3 

 E2 vs. E2.5&E3 

 E2.5 vs. E3 

Games-Howell 

E1vE2 

E1vE3 

CD 
not 

significantly 

different 

ANOVA: significant 
 CD2 vs. CD3 

 CD3 vs. CD1&CD2 

Hochberg, 

Gabriel 

CD1vCD3 

CD2vCD3 

BT 
significantly 

different 

Welch’s, Brown-

Forsythe’s: 

significant 

 BT1 vs. BT2&BT3 

 BT2 vs. BT3 

 BT3 vs. BT1&BT2 

 BT1 vs. BT2 

Games-Howell 

BT1vBT2 

BT1vBT3 

BT2vBT3 
Table 6.8 Parametric test results (gray background: factor has an effect on the productivity rate) 

 

                                                                𝜔𝜔2 =
𝑑𝑑𝑑𝑑1 ∗ (𝐹𝐹 − 1)

𝑑𝑑𝑑𝑑1 ∗ (𝐹𝐹 − 1) + 𝑁𝑁
                                                            (3) 

where F: Welch’s/Brown-Forsythe F, N: sample size. 
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Effect size (ω2) Effect 
> 0.01 small 

> 0.06 medium 

> 0.14 large 
Table 6.9 Effect sizes 

 

Factor Welch’s F df1 df2 Sig. Effect size Effect 
Q 0.343 3 27.544 0.794   

PS 1.981 3 47.254 0.130   

E 5.522 4 19.706 0.004 0.1282 medium 

BT 20.505 2 75.489 0.000 0.2408 large 
Table 6.10 Results for Welch’s test (gray background: factor has an effect on the productivity rate) 

 

Factor Brown-Forsythe F df1 df2 Sig. Effect size Effect 
Q 0.442 3 41.994 0.724   

PS 3.225 3 95.555 0.026 0.0515 small 

E 4.856 4 64.073 0.002 0.1114 medium 

BT 18.150 2 118.726 0.000 0.2181 large 
Table 6.11 Results for Brown-Forsythe’s test (gray background: factor has an effect on the 

productivity rate) 

 

In the case of the variances being homogenous, the ANOVA table has to be looked at. This 

was the case for knowledge, independence, and course difficulty. The test was significant 

only for course difficulty. The results can be seen in Table 6.12. The effect size was 

calculated based on (4), and the effect was determined according to Table 6.9. 

                                                                𝜔𝜔2 =
𝑆𝑆𝑆𝑆𝑀𝑀 − 𝑑𝑑𝑑𝑑𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑅𝑅

𝑆𝑆𝑆𝑆𝑇𝑇 + 𝑀𝑀𝑀𝑀𝑅𝑅
                                                             (4) 

where SSM: between group effect (sum of squares model), dfM: degrees of freedom for the 

effect, MSR: residual mean squared error, SST: total amount of variance in the data (sum of 

squares total) 

Factor F-ratio Sig. SSM SST MSR dfM Effect size Effect 
K 1.127 0.347       

I 0.237 0.917       

CD 4.374 0.015 18017 265178 2060 2 0.052 small 
Table 6.12 Results for ANOVA (gray background: factor has an effect on the productivity rate) 

 

Table 6.13 shows the main ANOVA summary table for course difficulty. The combined 

between group effect is the overall effect due to the model, while the within groups effect is 

the unsystematic variation in the data existing due to individual differences between the 
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groups. Since the F-ratio value corresponding to the former is significant, course difficulty 

has a significant effect on the productivity rate. The F-ratio of the quadratic term is significant 

suggesting a quadratic trend. 

 

Course 
Difficulty 

  
Sum of 

Squares 
df 

Mean 
Square 

F Sig. 

Between 

Groups 
(Combined)  18017 2 9008 4.374 0.015 

 Linear Term Unweighted 13329 1 13329 6.472 0.012 

  Weighted 1562 1 1562 0.758 0.386 

  Deviation 16455 1 16455 7.989 0.006 

 
Quadratic 

Term 
Unweighted 16455 1 16455 7.989 0.006 

  Weighted 16455 1 16455 7.989 0.006 

Within 

Groups 
  247161 120 2060   

Total   265178 122    
Table 6.13 ANOVA results for course difficulty 

 

Since the previous tests only show that the given factor has some effect on the dependent 

variable, planned contrasts and post-hoc tests were used to see where the differences lie. 

Tables 6.14-16 summarise the orthogonal contrasts tested for the factors. For instance, in 

the case of the quality factor, first, the highest score was selected as a baseline, and the 

other three categories were compared to this. Then the second highest score was 

compared to the two lower scores. Last, the lowest and second lowest scores were 

compared to each other. Then another set of comparisons were performed. This time the 

lowest score was chosen as the baseline and compared to the higher scores. Then the 

second lowest was compared to the two higher scores, and finally the two higher scores 

were compared to each other. The comparisons were defined based on the same logic in 

the case of the other factors as well. The significant contrasts are listed in Table 6.8. 

 

  I II III  I II III 
Q, PS 1 1 1 1  -3 0 0 

 2 1 1 -1  1 -2 0 

 2.5 1 -2 0  1 1 -1 

 3 -3 0 0  1 1 1 
Table 6.14 Contrasts for the quality and perceived speed variables 
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  I II III IV  I II III IV 
K, I, E 1 1 1 1 1  -4 0 0 0 

 1.5 1 1 1 -1  1 -3 0 0 

 2 1 1 -2 0  1 1 -2 0 

 2.5 1 -3 0 0  1 1 1 -1 

 3 -4 0 0 0  1 1 1 1 
Table 6.15 Contrasts for the knowledge, independence and experience variables 

 

  I II  I II 
CD, BT 1 -2 0  1 1 

 2 1 -1  1 -1 

 3 1 1  -2 0 
Table 6.16 Contrasts for the course difficulty and brick type variables 

 

The results for those contrasts that were significant are shown in Table 6.18. It also lists the 

effect sizes, which were calculated according to (5), while the effects were determined 

based on Table 6.17. 

                                                                 𝑟𝑟 = �
𝑡𝑡2

𝑡𝑡2 + 𝑑𝑑𝑑𝑑
                                                                     (5) 

 

Effect size (r) Effect 
> 0.1 small 

> 0.3 medium 

> 0.5 large 
Table 6.17 Effect sizes 

 

Comparisons t Sig. 
2-tailed/ 
1-tailed 

df Effect size Effect 

PS3 vs. PS1&PS2&PS2.5 -2.187 0.031 2-tailed 85.845 0.230 small 

PS2.5 vs. PS3 1.907 0.032 1-tailed 41.187 0.285 small 

K2 vs. K2.5&K3 -1.781 0.039 1-tailed 118 0.162 small 

E3 vs. E1&E1.5&E2&E2.5 -2.551 0.014 2-tailed 45.285 0.355 medium 

E2 vs. E1&E1.5 -2.439 0.017 2-tailed 66.241 0.287 small 

E1.5 vs. E1 -2.11 0.045 2-tailed 24.802 0.390 medium 

E1 vs. E1.5&E2&E2.5&E3 1.920 0.033 1-tailed 28.868 0.337 medium 

E2 vs. E2.5&E3 -2.532 0.027 2-tailed 11.499 0.598 large 

E2.5 vs. E3 3.286 0.020 2-tailed 5.266 0.820 large 
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Comparisons t Sig. 
2-tailed/ 
1-tailed 

df Effect size Effect 

CD2 vs. CD3 -2.952 0.004 2-tailed 120 0.260 small 

CD3 vs. CD1&CD2 2.831 0.005 2-tailed 120 0.250 small 

BT1 vs. BT2&BT3 -4.858 0.000 2-tailed 90.294 0.455 medium 

BT2 vs. BT3 -3.891 0.000 2-tailed 59.457 0.451 medium 

BT3 vs. BT1&BT2 6.192 0.000 2-tailed 68.052 0.600 large 

BT1 vs. BT2 2.712 0.008 2-tailed 97 0.266 small 
Table 6.18 Results for the significant contrasts 

 

For post-hoc tests, in the case of homogenous variances, Hochberg’s GT2 and Gabriel’s 

procedures were selected as they can deal with unequal sample sizes. The Games-Howell 

procedure was chosen for heterogeneous variances because that can also handle different 

sample sizes. The significant tests are listed in Table 6.8. These are similar to the significant 

contrasts. 

Based on the parametric tests performed, it can be concluded that brick type and experience 

have the most significant effects on the productivity out of the seven factors. The productivity 

rate significantly decreases from red bricks (BT1) to gray bricks (BT2) to blue bricks (BT3). 

This is consistent with how the brick type factor was defined as a difficulty scale. Experience 

has a reverse effect. The productivity rate increases significantly with more years spent 

working in construction. According to the Brown-Forsythe’s test, perceived speed also has 

a significant effect on productivity. Based on the significant contrasts, the bricklayers who 

were deemed fastest (PS3) by their supervisors tend to work significantly faster than the 

ones in the lower categories. This shows a consistency between the time measurements 

and the supervisors’ evaluation. According to the ANOVA, course difficulty significantly 

affects the productivity rate. Based on the significant contrasts, difficult courses (CD3) take 

significantly longer to build, than the courses in the other two categories. 

  

6.4 Non-parametric tests 

Due to some categories following normal distribution, while others are non-normal, and 

some factors having homogenous variances, while others are heterogeneous, both 

parametric and non-parametric tests were performed. The summary of the latter tests 

performed can be seen in Table 6.19. 

To see whether the productivity rate is affected by the various factors, one-way ANOVA 

tests were performed. Their non-parametric equivalent is the Kruskal-Wallis test. If it is 

significant, the given factor significantly affects the dependent variable. In this case, 

experience, course difficulty, and brick type significantly affect the productivity rate. The 

details are shown in Table 6.19. 
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Factor 
Kruskal-Wallis Jonckheere-Terpstra 
H df Sig. z Sig. 

Q 1.295 3 0.730 0.402 0.688 

PS 3.337 3 0.343 1.140 0.254 

K 4.137 4 0.388 0.135 0.893 

I 1.931 4 0.748 -1.120 0.263 

E 14.277 4 0.006 1.590 0.112 

CD 10.065 2 0.007 -0.799 0.424 

BT 22.265 2 0.000 -4.696 0.000 
 Table 6.19 Tests run and their main results (H: Kruskal-Wallis test statistic, z: standardised 

Jonckheere-Terpstra test statistic, gray background: factor has an effect on the productivity rate)  

 

The Kruskal-Wallis test can determine if the factor has an effect on the dependent variable, 

however, it cannot determine trends. Jonckheere-Terpstra tests were performed to 

determine whether the categories’ order is meaningful. The results of this test can be seen 

in Table 6.19, while the effect size and the effect of the factor producing a significant test 

statistic are shown in Table 6.20. The effect size was calculated according to (6). The effect 

was determined based on Table 6.17. According to the results, the productivity rate 

significantly decreases (because the z value is negative) with choosing different bricks 

(redgrayblue).  

                                                                            𝑟𝑟 =
𝑧𝑧
√𝑁𝑁

                                                                         (6) 

where z: standardised Jonckheere-Terpstra test statistic, N: sample/group size. 

 

Factor z Sig. Effect size Effect 
BT -4.696 0.000 -0.423 medium 
Table 6.20 Results of the Jonckheere-Terpstra test 

 

In the case of those factors, where the Kruskal-Wallis test was significant, pairwise 

comparisons were performed. The details of the significant ones can be seen in Table 6.21. 

The significance column contains the adjusted significance values, which are determined 

based on the Bonferroni correction. To minimise the Type I errors, the scores’ significance 

values were multiplied by the number of possible comparisons for each factor. For instance, 

in the case of brick type, there were three possible comparisons (BT1vBT2, BT1vBT3, 

BT2vBT3); therefore, the original significance value was multiplied by 3. Then these 

corrected significance values were compared to the 0.05 significance level. The effect size 

was calculated according to (6). The effect was determined based on Table 6.17.  
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Contrast 
2-tailed/ 
1-tailed 

z Sig. N Effect size Effect 

E1vE2 2-tailed -2.907 0.036 65 -0.361 medium 

E2.5vE2 1-tailed 2.674 0.038 47 0.390 medium 

CD1vCD3 2-tailed 2.994 0.008 89 0.317 medium 

CD2vCD3 2-tailed 3.143 0.005 40 0.497 medium 

BT1vBT3 2-tailed 4.712 0.000 85 0.511 large 

BT2vBT3 2-tailed 2.934 0.010 62 0.373 medium 
Table 6.21 Results of the pairwise comparisons (z: standardised test statistic, N: group size) 

 

Based on the non-parametric tests performed, it can be concluded that experience, course 

difficulty, and brick type significantly affect the productivity rate. This is the same result as 

that of the parametric tests. Pairwise comparisons show that building a difficult course 

(CD3) is significantly slower than constructing the other two, and that building with blue 

bricks (BT3) also takes significantly longer than laying the other two brick types. 

 

6.5 Regression analysis 

By using regression analysis, the dependent output variable – the productivity rate in this 

case – can be predicted based on the independent predictor variables, i.e., the selected 

influencing factors.  In the case of linear regression, the target value of the output variable 

can be calculated based on the linear equation (7). 

                                           𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝑋𝑋1 + 𝑏𝑏2 ∗ 𝑋𝑋2 + ⋯+ 𝑏𝑏𝑘𝑘 ∗ 𝑋𝑋𝑘𝑘 + 𝜀𝜀                                       (7) 

where Y: target value of the dependent variable, b: regression coefficients, X: values of the 

predictor variables, k: number of predictors, ε: error, difference between observed and 

predicted output value. 

The predictors in regression analysis can be either continuous or binary. In this case, the 

independent variables are ordinal; however, they were handled as continuous. It can be 

worthwhile treating ordinal variables as continuous to examine the linear component 

associated with them and to avoid overlooking possible relationships (Pasta, 2009). 

 

6.5.1 Simple regression analysis 

First, simple regression analyses were performed to see which factors affect the productivity 

rate on their own. The results can be seen in Table 6.22. R2 (coefficient of determination) 

shows how much of the variation of the productivity rate can be explained by the given 

factor. For example, brick type accounts for 25.6% of the variation in the model. The F-ratio 

being significant means that the model predicts the productivity rate significantly better than 

using the mean value. In case the t-test is significant, it can be concluded that the factor 

makes a significant contribution to predicting the productivity rate. Based on the above and 
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Table 6.22, experience and brick type are the two factors that can be used to predict the 

productivity rate significantly well. 

 

Factor R2 F-ratio Sig. Sig.? 
Q 0.01 1.233 0.269 no 

PS 0.021 2.591 0.110 no 

K 0.002 0.188 0.665 no 

I 0.005 0.584 0.446 no 

E 0.039 4.906 0.029 yes 

CD 0.006 0.717 0.399 no 

BT 0.175 25.629 0.000 yes 
Table 6.22 Results of simple regression analyses (gray background: significant t-test) 

 

6.5.2 Multiple regression analysis 

After simple regression analyses, several multiple regression analyses were performed. 

When determining the order in which the factors were added to the model, first, the results 

of the simple regression analyses were used. The factors were added in descending order 

of their F-ratio values: brick type, experience, perceived speed, quality, course difficulty, 

independence, knowledge. Based on the results, the order was changed according to the 

F-ratio of change values, course difficulty and independence moved to third and fourth 

positions respectively. This has not changed that model’s parameters that included all the 

factors; however, it provided a better understanding of the intermediate models. 

Three analyses were run. In the case of the first one, the factors were added to the model 

one by one. Then the backward method was applied for all the factors. In the case of the 

final test, quality and knowledge were not included in the model. 

The top row of Figure 6.4 shows the main components of the multiple regression analysis, 

while the middle row lists the questions the part looks to answer, and, finally, the bottom 

row gives the output of each component.   
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Figure 6.4 Steps of multiple regression analysis 

 

6.5.2.1 Multiple regression analysis with all factors 

Ideally, there should be no substantial correlation between the independent variables. This 

means that the Pearson’s correlation coefficient should not be greater than 0.9. There is 

one pairing (knowledge-independence) where the correlation is higher than that. Table 6.23 

shows the highest correlation coefficients. 

 

Factor #1 Factor #2 Pearson’s correlation coefficient Sig. 
K I 0.924 0.000 

Q K 0.825 0.000 

Q I 0.720 0.000 

E K 0.687 0.000 

BT I 0.653 0.000 

E Q 0.651 0.000 
Table 6.23 The highest Pearson’s correlation coefficients 

 

Table 6.24 gives the summary of the models. The first model had one predictor: the brick 

type. The second one also included the experience variable. Model 7 was created using all 

the factors. According to the R2 value, Model 7 can explain 45.6% of the variations of the 

productivity rate. The adjusted R2 shows that if Model 7 was applied to the whole population, 

rather than to the given sample, it could explain 42.2% of the variation. Where the F-ratio 
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of change is significant, the change in R2 is significant, meaning that adding a new predictor 

to the model makes a difference. This is the case for the first four models. The F-ratio 

represents the ratio of the improvement of the prediction relative to the inaccuracy that can 

still be found in the model. Here the F-ratio started to decrease after the second predictor 

had been added to the model. 

Model Factors R2 
Adjusted 

R2 

F-ratio 
of 

change 
df1 df2 

Sig. F-
ratio of 
change 

F-
ratio 

Sig. 
F-

ratio 
1 BT 0.175 0.168 25.629 1 121 0.000 25.629 0.000 

2 BT, E 0.350 0.339 32.354 1 120 0.000 32.312 0.000 

3 
BT, E, 

CD 
0.386 0.371 6.989 1 119 0.009 24.946 0.000 

4 
BT, E, 

CD, I 
0.424 0.405 7.811 1 118 0.006 21.733 0.000 

5 

BT, E, 

CD, I, 

PS 

0.442 0.418 3.703 1 117 0.057 18.525 0.000 

6 

BT, E, 

CD, I, 

PS, Q 

0.445 0.416 0.651 1 116 0.421 15.500 0.000 

7 

BT, E, 

CD, I, 

PS, Q, 

K 

0.456 0.422 2.224 1 115 0.139 13.744 0.000 

Table 6.24 Model summary  

The Durbin-Watson statistic shows if the assumption of independent errors is tenable. The 

value should be between 1 and 3, preferably closer to 2. Here it is 1.072.  

The parameters of Model 7 can be found in Table 6.25. The b values show each predictors’ 

contribution to the model. If b is negative, there is a negative relationship between the 

outcome and the predictor. In case it is positive, the relationship is positive, as well. A 

significant t-test means that the predictor’s contribution to the model is significant. In this 

case, brick type, experience, course difficulty, and independence make significant 

contributions to the model.  

Ideally, the confidence interval should not cross zero. However, the confidence intervals of 

quality, perceived speed, and knowledge do cross zero.   

To check whether there is collinearity in the data, the tolerance and variance inflation factor 

(VIF) values need to be examined. Table 6.25 also contains these values for Model 7. 

Tolerance should be greater than 0.1, and the VIF should not be greater than 10. Note that 

both rules were violated in the case of knowledge and independence.   
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 Unstandardised coefficients Standardised coefficients 
t Sig. 

95% confidence interval for b Collinearity statistics 
Factor b Standard error Beta Lower bound Upper bound Tolerance VIF 
Constant 162.663 21.516  7.560 0.000 120.043 205.282   

BT -58.265 6.942 -0.972 -8.393 0.000 -72.017 -44.514 0.353 2.836 

E 34.699 7.634 0.544 4.545 0.000 19.578 49.821 0.331 3.023 

CD -25.904 6.532 -0.321 -3.965 0.000 -38.843 -12.964 0.721 1.387 

I 41.504 16.031 0.632 2.589 0.011 9.750 73.258 0.079 12.586 

PS -13.315 8.504 -0.176 -1.566 0.120 -30.160 3.530 0.376 2.658 

Q 1.297 10.544 0.021 0.123 0.902 -19.589 22.183 0.159 6.291 

K -24.083 16.148 -0.405 -1.491 0.139 -56.069 7.902 0.064 15.538 
Table 6.25 Model parameters (gray background: significant t-test) 
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Table 6.27 lists those cases where the standard residual is less than -2, or greater than 2. 

There are seven cases listed, which is slightly over the 5% limit (123*0.05=6.15). Two cases 

(36 and 79) have a standardised residual of more than 2.5 or less than -2.5. This is slightly 

above the 1% limit (123*0.01=1.23). The listed cases were checked separately to see 

whether they have any undue influence on the model. The critical value of the Mahalanobis 

distance was determined based on the number of predictors and the sample size (Barnett 

and Lewis, 1978). Since the table only contains the critical values for maximum five 

predictors, the corresponding value, 20, is chosen as the critical value for this analysis. The 

Cook’s distance should not exceed 1. The leverage, in this case, should be less than 

0.1301, while the covariance ratio should be between 0.8049 and 1.195. Table 6.26 

summarises the critical values of each measure of influence. Based on Tables 6.26 and 

6.27, it can be seen that the seven listed cases satisfy the first three conditions but the 

covariance ratios of cases 36, 77, 78, and 79 are not within the calculated limits. 

 

Lower bound  
Measure of 
influence 

 Upper bound 

  
Mahalanobis 

Distance 
< 20 

  Cook's Distance < 1 

  Centred Leverage < 
2 ∗

𝑘𝑘 + 1
𝑁𝑁

= 2 ∗
7 + 1
123

= 0.1301 

1 − 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 − 3 ∗
7 + 1
123

= 0.8049 
< Covariance Ratio < 

1 + 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 + 3 ∗
7 + 1
123

= 1.195 
Table 6.26 Limits for casewise diagnostics (k: number of predictors, N: sample size) 

 

Case 
Number 

Standard 
Residual 

Mahalanobis 
Distance 

Cook's 
Distance 

Centred 
Leverage 

Value 

Covariance 
Ratio 

12 -2.254 12.035 0.085 0.099 0.800 

36 -2.622 10.901 0.103 0.089 0.687 

50 -2.167 10.901 0.070 0.089 0.821 

76 2.033 5.480 0.031 0.045 0.831 

77 2.484 5.480 0.046 0.045 0.710 

78 2.409 7.321 0.057 0.060 0.737 

79 3.120 7.321 0.096 0.060 0.537 
Table 6.27 Results of casewise diagnostics 
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Figure 6.5 shows the predicted and observed productivity rates. The predicted values are 

calculated based on the coefficients, b-values, listed in Table 6.25. The orange line depicts 

the ideal/theoretical situation where the predicted values are equal to the observed ones.  

 

 
Figure 6.5 Predicted and observed productivity rates based on Model 7  

 

Based on the observed and predicted values of the productivity rate, the mean absolute 

percentage error can be calculated using (8). 

                                     𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁
∗�

|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖|
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1

∗ 100%             (8) 

The mape for Model 7 is 27.37%. 

 

6.5.2.2 Multiple regression analysis with all factors (backward method) 

In the case of this method, first, all factors are included in the model, then at each step one 

factor is excluded. The factors are considered for removal in ascending order of their partial 

correlations. The ones meeting the removal criterion (probability of F ≥0.1) are excluded 

one by one. In this case, only quality was removed.     

Table 6.28 gives the summary of the models. The first model includes all the factors, while 

the second one includes all of them but quality. According to the R2 value, Model 2 can 

explain 45.5% of the variations of the productivity rate. The adjusted R2 shows that if Model 
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2 was applied to the whole population, rather than to the given sample, it could explain 

42.7% of the variation. Where the F-ratio of change is significant, the change in R2 is 

significant, meaning that adding a new predictor to the model makes a difference. This is 

the case for the first model. The F-ratio represents the ratio of the improvement of the 

prediction relative to the inaccuracy that can still be found in the model. Here the F-ratio 

increased after quality had been removed from the model. 

 

Model Factors R2 
Adjusted 

R2 

F-ratio 
of 

change 
df1 df2 

Sig. F-
ratio of 
change 

F-
ratio 

Sig. 
F-

ratio 

1 

BT, E, 

CD, I, 

PS, Q, 

K 

0.456 0.422 13.744 7 115 0.000 13.744 0.000 

2 

BT, E, 

CD, I, 

PS, K 

0.455 0.427 0.015 1 115 0.902 16.169 0.000 

Table 6.28 Model summary 

 

The Durbin-Watson statistic shows if the assumption of independent errors is tenable. The 

value should be between 1 and 3, preferably closer to 2. Here it is 1.071.  

The parameters of Model 2 can be found in Table 6.29. The b values show each predictors’ 

contribution to the model. If b is negative, there is a negative relationship between the 

outcome and the predictor. In case it is positive, the relationship is positive as well. A 

significant t-test means that the predictor’s contribution to the model is significant. In this 

case, only knowledge does not make a significant contribution to the model.  

Ideally, the confidence interval should not cross zero. However, the confidence interval of 

knowledge does cross zero.   

To check whether there is collinearity in the data, the tolerance and VIF values need to be 

examined. Table 6.29 also contains these values for Model 2. Tolerance should be greater 

than 0.1, and the largest VIF should not be greater than 10. Note that both rules were 

violated in the case of knowledge and independence.   
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 Unstandardised coefficients Standardised coefficients 
t Sig. 

95% confidence interval for b Collinearity statistics 
Factor b Standard error Beta Lower bound Upper bound Tolerance VIF 
Constant 161.954 20.643  7.845 0.000 121.068 202.840   

PS -12.623 6.348 -0.167 -1.988 0.049 -25.197 -0.049 0.669 1.494 

K -23.010 13.532 -0.387 -1.700 0.092 -49.812 3.791 0.091 11.005 

I 41.653 15.917 0.634 2.617 0.010 10.128 73.179 0.080 12.514 

E 34.503 7.433 0.541 4.642 0.000 19.781 49.225 0.346 2.890 

CD -26.021 6.435 -0.323 -4.044 0.000 -38.766 -13.275 0.737 1.357 

BT -58.363 6.867 -0.974 -8.498 0.000 -71.965 -44.761 0.357 2.799 
Table 6.29 Model parameters (gray background: significant t-test) 
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Table 6.31 lists those cases where the standard residual is less than -2, or greater than 2. 

There are seven cases listed, which is slightly above the 5% limit (123*0.05=6.15). Cases 

36, 77, and 79 have a standardised residual of more than 2.5 or less than -2.5. This can be 

accepted as within the 1% limit (123*0.01=1.23). The listed cases are checked separately 

to see whether they have any undue influence on the model. The critical value of the 

Mahalanobis distance is determined based on the number of predictors and the sample size 

and was determined to be 20 (Barnett and Lewis, 1978). Table 6.30 summarises the critical 

values of each measure of influence. Based on Tables 6.30 and 6.31, it can be seen that 

the seven listed cases satisfy the first three conditions but the covariance ratios of cases 

36, 77, 78, and 79 are not within the calculated limits.  

 

Lower bound  
Measure of 
influence 

 Upper bound 

  
Mahalanobis 

Distance 
< 20 

  Cook's Distance < 1 

  Centred Leverage < 2 ∗
𝑘𝑘 + 1
𝑁𝑁

= 2 ∗
6 + 1
123

= 0.114 

1 − 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 − 3 ∗
6 + 1
123

= 0.829 
< Covariance Ratio < 

1 + 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 + 3 ∗
6 + 1
123

= 1.171 

Table 6.30 Limits for casewise diagnostics (k: number of predictors, N: sample size) 

 

Case 
Number 

Standard 
Residual 

Mahalanobis 
Distance 

Cook's 
Distance 

Centred 
Leverage 

Value 

Covariance 
Ratio 

12 -2.266 11.965 0.098 0.098 0.833 

36 -2.643 10.166 0.111 0.083 0.724 

50 -2.185 10.166 0.076 0.083 0.845 

76 2.061 2.449 0.018 0.020 0.836 

77 2.514 2.449 0.027 0.020 0.730 

78 2.413 7.007 0.062 0.057 0.773 

79 3.127 7.007 0.105 0.057 0.587 
Table 6.31 Results of casewise diagnostics 

 

Figure 6.6 shows the predicted and observed productivity rates. The predicted values are 

calculated based on the coefficients, b-values, listed in Table 6.29. The orange line depicts 

the ideal/theoretical situation where the predicted values are equal to the observed ones. 
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Figure 6.6 Predicted and observed productivity rates based on Model 2 

 

The mean absolute percentage error was calculated using (8). It is 27.32% for Model 2. 

 

6.5.2.3 Multiple regression analysis with selected factors 

Adding the factors one by one to the model during the regression analysis described in 

Section 6.5.2.1 was useful also to see the results for each intermediate model. Model 5 

containing 5 factors (perceived speed, independence, experience, course difficulty, brick 

type) satisfied the criteria (no substantial correlation between variables, significant t-tests, 

confidence interval not crossing zero, low level of collinearity); therefore, it was further 

examined. 

Table 6.32 gives the summary of the model. According to the R2 value, the model can 

explain 44.2% of the variations of the productivity rate. The adjusted R2 shows that if the 

model was applied to the whole population, rather than to the given sample, it could explain 

41.8% of the variation. Where the F-ratio of change is significant, the change in R2 is 

significant, meaning that adding the predictors to the model makes a difference. The F-ratio 

represents the ratio of the improvement of the prediction relative to the inaccuracy that can 

still be found in the model.  
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Model Factors R2 
Adjusted 

R2 

F-ratio 
of 

change 
df1 df2 

Sig. F-
ratio of 
change 

F-
ratio 

Sig. 
F-

ratio 

1 

PS, I, 

E, CD, 

BT 

0.442 0.418 18.525 5 117 0.000 18.525 0.000 

Table 6.32 Model summary 

 

The Durbin-Watson statistic shows if the assumption of independent errors is tenable. The 

value should be between 1 and 3, preferably closer to 2. Here it is 1.069.  

The parameters of the model can be found in Table 6.33. The b values show each 

predictors’ contribution to the model. If b is negative, there is a negative relationship 

between the outcome and the predictor. In case it is positive, the relationship is positive as 

well. A significant t-test means that the predictor’s contribution to the model is significant. In 

this case, perceived speed does not make a significant contribution to the model; however, 

the significance value is barely over the limit.  

Ideally, the confidence interval should not cross zero. While the confidence interval of 

perceived speed does cross zero, the positive side of the interval is small compared to the 

entire interval.   

To check whether there is collinearity in the data, the tolerance and VIF values need to be 

examined. Table 6.33 also contains these values for the model. Tolerance should be greater 

than 0.1, and the largest VIF should not be greater than 10. Note that none of the rules have 

been violated.   
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 Unstandardised coefficients Standardised coefficients 
t Sig 

95% confidence interval for b Collinearity statistics 
Factor b Std. error Beta Lower bound Upper bound Tolerance VIF 
Constant 167.687 20.530  8.168 0.000 127.029 208.345   

PS -12.309 6.397 -0.162 -1.924 0.057 -24.977 0.360 0.670 1.493 

I 17.886 7.677 0.272 2.330 0.022 2.682 33.091 0.349 2.865 

E 28.797 6.686 0.451 4.307 0.000 15.555 42.038 0.435 2.301 

CD -24.896 6.452 -0.309 -3.858 0.000 -37.675 -12.117 0.745 1.343 

BT -53.236 6.220 -0.889 -8.559 0.000 -65.554 -40.918 0.443 2.259 
Table 6.33 Model parameters (gray background: significant t-test) 
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Table 6.35 lists those cases where the standard residual is less than -2, or greater than 2. 

There are six cases listed, which is slightly above the 5% limit (123*0.05=6.15). Cases 78 

and 79 have a standardised residual of more than 2.5 or less than -2.5. This is above the 

1% limit (123*0.01=1.23). The listed cases are checked separately to see whether they 

have any undue influence on the model. The critical value of the Mahalanobis distance is 

determined based on the number of predictors and the sample size and was determined to 

be 20 (Barnett and Lewis, 1978). Table 6.34 summarises the critical values of each measure 

of influence. Based on Tables 6.34 and 6.35 it can be seen that the seven listed cases 

satisfy the first three conditions but the covariance ratios of cases 36, 77, 78, and 79 are 

not within the calculated limits.  

 

Lower bound  
Measure of 
influence 

 Upper bound 

  
Mahalanobis 

Distance 
< 20 

  Cook's Distance < 1 

  Centred Leverage < 2 ∗
𝑘𝑘 + 1
𝑁𝑁

= 2 ∗
5 + 1
123

= 0.098 

1 − 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 − 3 ∗
5 + 1
123

= 0.854 
< Covariance Ratio < 

1 + 3 ∗
𝑘𝑘 + 1
𝑁𝑁

= 1 + 3 ∗
5 + 1
123

= 1.146 

Table 6.34 Limits for casewise diagnostics (k: number of predictors, N: sample size) 

 

Case 
Number 

Standard 
Residual 

Mahalanobis 
Distance 

Cook's 
Distance 

Centred 
Leverage 

Value 

Covariance 
Ratio 

12 -2.130 11.365 0.095 0.093 0.899 

36 -2.440 8.752 0.094 0.072 0.813 

76 2.044 2.449 0.021 0.020 0.865 

77 2.493 2.449 0.031 0.020 0.773 

78 2.544 6.043 0.070 0.050 0.777 

79 3.252 6.043 0.114 0.050 0.610 
Table 6.35 Results of casewise diagnostics 

 

Figure 6.7 shows the predicted and observed productivity rates. The predicted values are 

calculated based on the coefficients, b-values, listed in Table 6.33. The orange line depicts 

the ideal/theoretical situation where the predicted values are equal to the observed ones. 
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Figure 6.7 Predicted and observed productivity rates based on Model 1 

 

The mean absolute percentage error was calculated using (8). It is 27.70% for Model 1. 

 

6.5.3 Summary of regression analyses 

Both simple and multiple regression analyses were performed on the data table. Multiple 

regression analyses were performed for all the factors and also only including selected 

factors. 

The adjusted R2 showing what percentage of the variation the model could explain, if 

applied to the whole population was approximately 42% for all multiple regression models. 

Due to the F-ratios being significant for all these models, this 42% that can be explained is 

a significant amount. Changing the factors included in the model did not modify the adjusted 

R2 values. 

The mean absolute percentage error was approximately 27%. This is not ideal. However, 

the models will not be used for prediction; therefore, this accuracy can be accepted. If they 

were to be used, the datapoints for which casewise diagnostics were performed would need 

to be further examined. The mean absolute percentage error for the ANN model component, 

which will be used for calculating the productivity rates, was 13%. 

Table 6.36 summarises the results of the simple and multiple regression analyses. The top 

row shows whether the factor’s contribution to the model is significant. The + sign in the 

bottom rows refers to a positive relationship between the factor and the productivity rate, 
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while the - sign marks a negative, i.e., inverse, relationship. For example, the factor 

independence was not significant in the simple regression analysis, however, it was 

significant in the multiple regression models. According to the simple regression analysis, 

there is a negative relationship between independence and the productivity rate, however, 

the multiple regression analyses suggest a positive relationship, meaning that as 

independence increases, the productivity rate increases, as well. Based on the analyses, 

experience, brick type, independence, and course difficulty make significant contributions 

to the models, that is, these factors significantly predict the productivity rate. According to 

the sign of the b values, independence and experience have a positive relationship with the 

productivity rate, while in the case of course difficulty and brick type, the relationship is 

inverse, meaning that as these factors increase, the productivity rate decreases. 

  

Factor Simple 
regression 

Multiple regression 
All All, 

backward 
Selected 

Quality 
not significant not significant not included not included 

+ +   

Perceived 

speed 

not significant not significant significant not significant 

+ - - - 

Knowledge 
not significant not significant not significant not included 

+ - -  

Independence 
not significant significant significant significant 

- + + + 

Experience 
significant significant significant significant 

+ + + + 

Course 

difficulty 

not significant significant significant significant 

- - - - 

Brick type 
significant significant significant significant 

- - - - 
Table 6.36 Summary of the results of the regression analyses (gray background: factor’s 

contribution to the model is significant) 

 

6.6 Chapter summary 

This chapter details the statistical analyses performed on the data table. As the normality 

and homogeneity tests showed that some groups of factors followed a normal distribution, 

while others were non-normal, and that in some cases the variances were homogeneous, 

while in others they were heterogeneous, both parametric (ANOVA, Welch’s, Brown-

Forsythe’s) and non-parametric tests (Kruskal-Wallis, Jonckheere-Terpstra) were used to 
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determine which factors had significant effects on the productivity rate. In addition, simple 

and multiple regression analyses were conducted to examine the relationship between the 

factors and the productivity rate. In Chapter 8, the results of the performed tests will be 

compared to those of the sensitivity analyses of the ANNs shown in Chapter 5.   
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CHAPTER 7 

MODELLING PART 3: DISCRETE-EVENT SIMULATION 
COMPONENT 

 

7.1 Simulation methods 

Simulation is a method to make experiments on a system that does not exist yet, or one 

that does; however, conducting tests on it would be disruptive, costly, or dangerous for 

various reasons. Construction simulation can be useful due to these models being able to 

reflect the dynamic nature of construction processes and capture complicated behaviour, 

uncertainties, and dependencies. 

There are three basic simulation methods: discrete-event simulation (DES), system 

dynamics (SD), and agent-based modelling (ABM) (Borshchev, 2013; Raoufi and Robinson 

Fayek, 2020). DES is process-focused, where a sequence of tasks is defined. The entities, 

which are passive, non-interacting objects without any specific features, are moving through 

this workflow, during which they are seized, queued, delayed, and released. Resources can 

be assigned to the tasks. Due to the low level of abstraction, DES can be well used for 

modelling on the operational level (Peña-Mora et al., 2008). 

SD can be used to model a system’s behaviour and workings with feedback loops. It focuses 

on the various influencing factors and the relationships among them. In contrast to DES, in 

the case of SD, the level of abstraction is high as this method deals with aggregates (stocks 

and flows) and global trends (Borshchev and Filippov, 2004; Borshchev, 2013). Therefore, 

SD can be applied on the strategic level, to see how context-level variables affect the 

selected system (Alvanchi et al., 2011).    

While SD is a top-down method, ABM is a bottom-up approach, where the system’s 

behaviour emerges from how individual agents interact with each other and their 

environment based on defined rules (Watkins et al., 2009). The agents are heterogenous 

with different attributes. They are also adaptive, capable of changing and evolving (Watkins 

et al., 2009). ABM can be used on all levels of abstraction (Borshchev and Filippov, 2004).  

Table 7.1 summarises the most important input necessary for the three basic simulation 

methods and the possible outputs these models can provide. 
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Methods Input Output 
Discrete-event 

simulation (DES) 

Tasks  

Activity durations 

Resources 

Process duration 

Resource usage 

 

System dynamics 

(SD) 

Influencing factors 

Stocks and flows 

Feedback loops 

Changes of factors 

over time 

Effects of factors 

Agent-based 

modelling (ABM) 

Agents  

Attributes 

Rules of behaviour 

Behaviour of the 

system 

Table 7.1 Input and output of basic simulation methods 

 

7.2 Simulation framework 

The steps of creating a construction simulation model can be seen in Figure 7.1. The first 

step is to analyse the problem that needs to be solved. Then the question, which the 

simulation results should answer, must be phrased. Depending on the complexity of the 

question or the part of reality to be modelled, the left (single method) or right (hybrid 

approach) path should be chosen. The next step is to select the most suitable simulation 

approach. The choice could be made based on the purpose of the investigation and the 

required level of abstraction. 
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Figure 7.1 Simulation framework 

 

If the focus is on the process itself, DES might be the most appropriate method, as it could 

be used on the operational level. It provides information on activity and project durations 

and resources. In DES, for instance, the workflow of masonry works can be modelled. 

Examples for descriptions of the workflow can be found in studies such as Florez and 

Castro-Lacouture’s (2014) work, in the case of the construction masonry unit, or Dawood 

et al.’s (2001) paper, in the case of brickwork. If the objective is to see one factor’s effect 

on activity durations in a process, it is probably enough to choose a proper probability 

distribution function for the activity distributions in DES. However, if the effects of several 

factors are to be taken into account, the combination of DES with another method could 

provide better results. 

SD concentrates on causal relationships on a macro level and tracks the changes of the 

continuous variables. In the case of masonry, it could be used, for example, to include the 
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factors influencing labour productivity. SD can be applied in both a qualitative and a 

quantitative way (Kunc, 2017). The former can be used, if the aim is to understand the 

workings of the system (Kunc, 2017). In the case of the latter, the system is expressed as 

a system of differential equations (Borshchev and Filippov, 2004). 

ABM may be used at all levels of abstraction. By defining the agents with their attributes 

and rules of behaviour, the workings of the global system are revealed. The agents, for 

instance, could be bricklayers and labourers working on a project. The different wall 

sections could also be agents. For example, in Watkins et al.’s (2009) study, every worker 

and task were represented as agents. 

In more simple cases, the basic simulation methods can be used on their own; however, in 

more complex cases, a combination of methods might be more appropriate. Different 

names exist for these combined approaches, including: ‘hybrid’, ‘multi-method’, and ‘multi-

paradigm’ simulations (Mustafee et al., 2015). Mosterman (1999) defined the composite of 

discrete and continuous simulation as ‘hybrid simulation’. Balaban et al. (2014) argue that 

ABM might not be considered a paradigm; hence, those approaches where ABM is paired 

with another method may not be called multi-paradigm. According to them, there is also a 

distinction between mixed/hybrid and multi-methods (Balaban et al., 2014). Both Mustafee 

et al.(2015) and Balaban et al. (2014) agree that proper definitions are needed. In this study, 

the term ‘hybrid’ refers to a combination of methods. 

A hybrid model can be created in various ways. One is to combine any two of the above-

mentioned basic simulation methods, or, perhaps, all three of them. Another option is to 

compose the model of a simulation part and another, such as fuzzy logic (FL) or artificial 

neural network (ANN), component. FL can be useful when the variables are subjective and 

could not be easily expressed with crisp values. ANN can be applied when the variables’ 

combined effects are complex, and they are subject to uncertainty. The point of creating a 

hybrid model is to combine the advantages of the methods involved and to counterbalance 

their shortcomings.    

If a hybrid solution seems appropriate, after choosing the most suitable approach, the 

structure must be determined. This means that the way the different components of the 

model are linked to each other needs to be defined. Moradi et al. (2015) defined three 

possible ways the DES and SD models could be linked. First is the hierarchical format (see 

Figure 7.2), which could either be SD- or DES-dominant (in Figure 7.2, Method2 is 

dominant). In this case, there is a vertical interaction between the strategic (SD) and 

operational (DES) models. The second one is the phase-to-phase format, where the two 

models run in separate phases. The third type is the integrated format (see Figure 7.3), 

which allows constant bidirectional interactions (Moradi et al., 2015). Alvanchi et al. (2011) 

also identified three structures of DES-SD hybrid models similar to the ones mentioned 

above. These are the DES-dominant, SD-dominant (see Figure 7.2) and parallel modelling 
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(see Figure 7.4). In the case of the first two, the direction of the interaction is towards the 

dominant part, while in parallel models, the interaction is bidirectional (Alvanchi et al., 2011). 

 

 
Figure 7.2 Sequential structure of hybrid simulation 

 

 
Figure 7.3 Integrated structure of hybrid simulation 

 

Swinerd and McNaught (2012) defined three classes for SD-ABM hybrid simulation. Figure 

7.3 shows how in the case of the integrated simulation, there is continuous feedback both 

ways between the two modules. Per Figure 7.2 sequential simulation means that first, the 

SD module runs, and its output becomes the input for the ABM module or vice versa. The 

third class is interfaced hybrid design (see Figure 7.4), where the modules run parallel and 

their outputs are combined (Swinerd and McNaught, 2012). 
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Figure 7.4 Parallel structure of hybrid simulation 

 

Borshchev (2013) described the six most frequently used variations of the integrated 

structure (see Figure 7.3) and provided examples for all of them. These are the following: 

 agents in an SD environment, 

 agents interacting with a DES model, 

 DES model linked to an SD model, 

 SD inside every agent, 

 DES inside every agent, 

 agents as entities in a DES model. 

 

Of the three structures that have been presented thus far, if they were to be theoretically 

ranked according to the level of interaction between the two components, parallel would be 

the lowest and integrated the highest. In the case of the parallel structure (see Figure 7.4), 

the components are running simultaneously, and their outputs are combined. The second 

possibility is the sequential structure (see Figure 7.2), which means that the output of one 

approach becomes the input of the other, and the final output comes from the second. The 

last option is the integrated structure (see Figure 7.3). In this case, the interaction between 

the components is bidirectional and continuous.   

After the most suitable structure is selected, the next step in this branch (see Figure 7.1) is 

to define the interaction points between the components. These interface variables are 

the ones that may affect the variables in the other component. Creating hybrid models 

provides the opportunity of having dynamic variables, which would otherwise be static using 

a basic simulation method (Alvanchi et al., 2011). Furthermore, applying a hybrid approach 

can mean the combination of a continuous (e.g. SD) and a discrete (e.g. DES) method, 

meaning that time advancement has to be defined (Alvanchi et al., 2011; Alzraiee et al., 

2012). It is important, therefore, to be aware of how the interacting variables may change 

due to linking the components of the hybrid system. According to Alvanchi et al. (2011), 

there are five types of interactions: 
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 in case of one discrete and one continuous variable 

o a discrete change in the discrete variable causing a discrete change in the 

continuous one, 

o a discrete change in the discrete variable causing a change in the functional 

description of the continuous one, 

o a continuous change in the continuous variable causing a discrete change in 

the discrete one, 

 in case of two continuous variables 

o a continuous change in one continuous variable causing a continuous change 

in the other, 

 in case of two discrete variables 

o a discrete change in one discrete variable causing a discrete change in the 

other. 

 

Based on the selected simulation approach, its structure and interaction points, if applicable, 

and the required input data, the simulation model could be produced. The necessary input 

information is listed in Table 7.1. 

After the preliminary model is ready, it needs to be tested and refined. The improved model 

must be checked, as well. Verification confirms that the model is a correct reflection of 

reality; whereas validation is performed to show that the model’s accuracy is adequate for 

the simulation problem. Verification and validation do not only happen at the end, but they 

are performed after every step in the model development process (Sargent, 2015). 

 

7.3 Model for bricklaying 

Using the flowchart shown in Figure 7.1, the choices for the first couple of steps were 

explained before, in Chapter 4. Since the goal was to obtain better time estimates for the 

scheduling of bricklaying works and to aid more efficient resource allocation, the complex 

path – i.e., a hybrid modelling approach – was selected. The model had two components: 

an ANN part, which was shown in detail in Chapter 5, and a DES part. The latter was chosen 

because its output coincides with the aim of the task. Based on Table 7.1, DES can simulate 

the process of bricklaying, by inputting the task durations and resource information, the 

process durations of various resource combinations can be compared. 

The next step in the flowchart in Figure 7.1 is the selection of the structure of the hybrid 

model. In this study, a sequential structure (see Figure 7.2) was chosen. First, the ANN 

model component was trained based on the collected data, and then it was used to provide 

the task duration for the activity of laying bricks, which was fed into the DES part of the 

model together with the durations of the other tasks and resource information. This was 
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done in order to gain the needed process duration and resource allocation information (see 

Figure 7.5). 

 

 
Figure 7.5 DES-ANN hybrid approach 

 

The red arrow in Figure 7.5 denotes the direction of the interaction between the two model 

components. It was one-way, going from the ANN to the DES part. The interface variable, 

where the two components are linked, was the activity duration of the task laying bricks. 

The calculations to obtain these values will be shown in detail in Section 7.4.  

The next step was to create the model. For this, in the case of DES, the process, the entities 

going through it, the task durations, and the resources were needed. The workflow for 

building the brick outer leaf of a cavity wall façade, which was explained in detail in Section 

4.2, can be seen in Figure 7.6.   

 

 
Figure 7.6 Process of bricklaying – DES model component 

 

Activity preparation means that all necessary materials and tools are placed in front of the 

wall section to be built by, most commonly, labourers. This includes, for example, bricks, 

mortar boards, ties, weeps, movement joint fillers, trowels, spirit levels, profiles, and lines. 

Before the activity laying bricks can begin, profiles are mounted on both ends of the wall 

section, and the line is stretched between them (see activity profiles up). The main activity 

is the laying of the bricks, which shows actual progress. This task includes placing mortar, 

cutting bricks, if applicable, placing bricks, removing excess mortar, and moving the line up 

to the level of the next course. After the courses are laid, the profiles can be taken down 
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(see activity profiles down). The last activity is the jointing, when the joints between the 

bricks are tidied up according to the required jointing type. 

The entities in this case were the wall sections that needed to be built. The task durations 

and the resources assigned to each activity are summarised in Table 7.2, in the case of 

model wall section #1 built of red bricks (see Figure 7.8). For example, the task duration of 

the activity mounting of the profiles was expressed as a triangular distribution with a 

minimum value of 0.0788 h, a maximum value of 0.1463 h, and a most likely value of 0.1125 

h. The triangular distribution was chosen in the case of four tasks. This distribution is 

commonly used in simulation modelling, and is a reasonable choice in a data-deficient 

environment (AbouRizk and Halpin, 1992; Thompson et al., 2016). The duration of the 

mounting and dismounting of the profiles activities does not depend on the size of the wall 

section or the brick type. Therefore, the same values were used for all model wall sections 

(more on these in the next section). Most of the materials and tools placed in front of the 

wall section during preparation are the same regardless of the size of the wall section or 

the brick type. The size only affects the number of bricks that need to be supplied; however, 

the space is limited, and materials can be brought during the laying of the bricks by the 

labourers, if needed. Therefore, the same values were used for the task duration for all 

model wall sections. The amount of jointing that needs to be performed depends on the 

total length of the joints. Moreover, the time this task takes is dependent upon the type of 

the jointing and the brick. Therefore, different values were used for the various model wall 

sections and brick types. 

Based on the observations, two labourers were assigned to the task preparation, while two 

bricklayers (one gang) were allocated for the other activities. The model bricklaying gangs 

defined will be explained in the coming section.    

 

Task Duration, [h] Resources 
Preparation Triangular (0.1959, 0.3638, 0.2799) 2 labourers 

Profiles up Triangular (0.0788, 0.1463, 0.1125) 1 bricklaying gang 

Laying bricks Calculation shown in Section 7.4 1 bricklaying gang 

Profiles down Triangular (0.0394, 0.0731, 0.0563) 1 bricklaying gang 

Jointing Triangular (0.1750, 0.3249, 0.2499) 1 bricklaying gang 
Table 7.2 Input of the DES model component for model wall section #1 built of red bricks 

 

The DES model was created using the AnyLogic 8.7.5 (Personal Learning Edition) software 

running on a Lenovo laptop with 8 GB of RAM, Intel®Core™ i5-7200U processor on a 64-

bit Windows 10 Home operating system. AnyLogic was selected early on in the research 

project when the simulation method had not yet been chosen because it is the leading 

simulation software in numerous industries, and it can handle all three basic simulation 

methods and any hybrid approach combining these methods. 
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7.4 Interaction point between the model components 

As mentioned in the previous section, the interface variable between the ANN and DES 

model components was the task duration of the activity laying bricks. Since the DES model 

component will be used for running various resource allocation scenarios, model bricklayers 

and model wall sections needed to be defined. Their parameters were input into the ANN 

model, which gave the productivity rate of the given bricklayer for the specific course and 

brick type. Then this value was used to calculate the time it took to construct the model wall 

sections for individual bricklayers. In the next step, the activity duration for bricklaying gangs 

of two were determined. Finally, a beta distribution was fit, and this became the input of the 

DES component. The steps of the calculations are shown in Figure 7.7 and will be explained 

in detail in the sections below. 

 

 
 Figure 7.7 Steps of calculating the duration of the laying bricks activity 

 

7.4.1 Model project: model bricklayers 

As the input for the ANN model component, the created model bricklayers and model wall 

sections were used. Since both the sensitivity analysis of the ANN model and the statistical 

analysis of the collected data showed experience to be the most important factor for the 

bricklayers, the model bricklayers were configured based on that characteristic. There were 

six model bricklayers, two for each level of experience. One had lower, while the other 

higher marks in the other categories. Table 7.3 shows the model bricklayers defined.   

 

Factors 
Model bricklayers 

BL1 BL2 BL3 BL4 BL5 BL6 
Quality (Q) 1 2 2 3 3 3 

Perceived speed 

(PS) 

1 2 2 2 2 3 

Knowledge (K) 1 2 2 3 2 3 

Independence (I) 1 2 2 3 2 3 

Experience (E) 1 1 2 2 3 3 
Table 7.3 Model bricklayers 
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7.4.2 Model project: model wall sections 

Model wall sections also had to be defined to have the input for the ANN model component. 

The three model wall sections – WS1, WS2, and WS3 – are shown in Figure 7.8, 7.9, and 

7.10 respectively. These were modelled similarly to the wall sections constructed at the 

observed projects, where the data collection took place. 

 

 
Figure 7.8 Model wall section – WS1 

 

 
Figure 7.9 Model wall section – WS2 

 

 
Figure 7.10 Model wall section – WS3 

 

Not all wall sections were built of all three brick types (BT); therefore, only those 

combinations were used for the model wall sections, whose construction had been 

observed during the data collection. Table 7.4 contains the pairings of model wall sections 

and brick types applied in the study. 

 

Model wall section Brick type 
Red (BT1) Gray (BT2) Blue (BT3) 

WS1    

WS2    

WS3    
Table 7.4 Model wall sections by brick type 



150 
 

The different wall sections contained courses of various difficulty levels. WS1 only had level 

1 courses, WS2 had both level 1 and 2 courses, while WS3 had courses in all three 

categories. The course difficulty levels are explained in detail in Section 4.1.2. Table 7.5 

contains the number of bricks per course difficulty level and in total in the model wall 

sections. For example, in the case of WS2, 91 bricks would need to be laid in level 1 courses 

and 234 bricks in level 2 courses, a total of 325 bricks. 

 

Number of bricks Course difficulty (CD) Total 
Model wall section 1 2 3 
WS1 549 0 0 549 

WS2 91 234 0 325 

WS3 91 172 58 321 
Table 7.5 Number of bricks in model wall sections per course difficulty 

 

7.4.3 Calculations 

After defining the model bricklayers and wall sections, the productivity rates of the various 

combinations needed to be determined with the help of the ANN model component. Table 

7.6 shows an example for the input for model bricklayer #5, model wall section #2 built of 

gray bricks. 

 Q PS K I E CD BT 
BL5_WS2.2 3 2 2 2 3 1 2 

 3 2 2 2 3 2 2 
Table 7.6 Example of the input for the ANN component 

 

The output of the ANN model component was the productivity rate given in a dimension of 

bricks/hour. However, the duration of the laying bricks task was measured in hours; 

therefore, the number of bricks per course category had to be divided by the productivity 

rate and summed up for all types of courses. The results of these calculations are shown in 

Table 7.7, in the case of the example bricklayer-wall section combination shown in Table 

7.6.  

BL5_WS2.2 Output of 
Network A 

Output of 
Network C 

Number 
of bricks 

Duration 
based on 
Network A  

Duration 
based on 
Network C 

Mean 
duration 

 [bricks/h] [bricks/h] [bricks] [h] [h] [h] 

CD1 183.97 137.57 91 0.495 0.661  

CD2 139.62 101.66 234 1.676 2.302  

Σ    2.171 2.963 2.567 
 Table 7.7 Example for duration calculation for a single bricklayer  
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Table 7.7 includes the output of the ANN model component for the input contained by Table 

7.6. ANN Networks A, B, and C were identified as the best performing ANN models and 

were described in detail in Section 5.5. All model bricklayer and model wall combinations 

were input into all three networks. In some instances, the output productivity rates were 

negative, which are, of course, not appropriate as negative amounts of bricks cannot be 

laid. In some other cases, while the output was not negative, it reflected a very low 

productivity rate, which was also very different from the output of the other two networks. In 

the case of both problems, corrections were made. To obtain more consistent results, the 

values were modified to the mean of the output of the other two networks. However, it could 

be observed that these phenomena mostly occurred in the case of the output of Network B. 

After corrections, the means were calculated for the output of all three networks and for the 

output of only networks A and C. These were compared, and it was found that the difference 

exceeded 10% in only a handful of cases; therefore, the output of Network B was not used 

in subsequent calculations. This way corrections were only necessary in 4 instances out of 

the 36 in total.  

It is worth mentioning that in some cases all three models gave the same output for the 

same input. This typically happened in the case of model bricklayer #6 as around 20% of 

the observed bricklayers had the same attributes, and more than 20% of the observations 

were of them. Therefore, the networks were probably better trained for bricklayers with the 

most experience and the best skills.    

The time it takes for one model bricklayer #5 (characteristics in Table 7.3) to build model 

wall section #2 (shown in Figure 7.9) of gray bricks (BT2) is 2.567 hours. However, 

bricklayers typically work in gangs of two. Therefore, the task duration needed to be 

calculated for the gangs, shown as step 3 in Figure 7.7. For this, first the model bricklayers 

had to be paired. Since the goal was to compare which pairings would perform better, the 

least experienced bricklayer with the lowest scores was put in a gang with the most 

experienced bricklayer with the highest scores and so on. Table 7.8 contains the model 

bricklaying gangs.  

 

Model bricklaying gang (BG) Bricklayer 1 Bricklayer 2 
BG1 BL1 BL6 

BG2 BL2 BL5 

BG3 BL3 BL4 
Table 7.8 Model bricklaying gangs 

 

Table 7.9 and Equations (1) to (7) show how Equation (8), which was ultimately used to 

calculate the task duration for the gangs, was determined. The wall section they are working 

on is 1 unit in size. Since they are not working at the same speed, one of them builds x part 

of the wall, while the other 1-x. When they are working together, it takes both bricklayers t 
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time to build that part of the wall. However, if they worked alone on the given section, it 

would take them t1 and t2 time respectively. Equations (1) to (3) are based on the speed-

distance-time formulae from physics. Equations (4) to (6) are derived from Equation (3), 

while Equation (7) is the combination of Equations (1), (2), and (6). Equation (8) shows the 

time (t) needed for the gang to build the given wall section expressed with the help of the 

individual times (t1 and t2), which were calculated in the previous step. For example, Table 

7.7 contains the calculation of a value of t2.  

 

Bricklayer Quantity of 
wall section 

done 

Time, if 
working 
together 

Time, if 
working alone 

Productivity 
rate 

Bricklayer 1 x t t1 v1 

Bricklayer 2 1-x t t2 v2 
Table 7.9 Calculation of the task duration for the gang   
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The last step in creating the input of the DES model component was to make the task 

duration stochastic. For this, the beta function was chosen as that is continuous, has lower 

and upper bounds, is flexible, and frequently used in construction modelling (AbouRizk and 

Halpin, 1992; Fente et al., 2000). The shape of the function is determined by the shape 

parameters, α and β. For example, if these values are between -1 and 0, the function has 

a U shape, if they are greater than 1, it has a bell-shape (Fente et al., 2000). The latter is 

the one usually defined. When α equals β, the shape is symmetrical. Parameters α and β 

can be calculated based on the minimum (a) and maximum (b) expected duration values 
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and two of the following: mean (μ), mode (m), variance (σ2), selected percentile (AbouRizk 

et al., 1991). In this case, a symmetrical bell shape was chosen for the beta function with 

the minimum and maximum values determined as 70% and 130% of the durations 

calculated in the previous step (Hajdu and Bokor, 2016). Due to the symmetry, the mean is 

equal to the mode (Equation (9)). The variance was calculated based on Equation (10), 

which is the classic PERT formula (Hahn and Del Mar López Martín, 2015; Hajdu and Bokor, 

2016). Equations (11) to (14) were used to determine the value of the shape parameters 

(AbouRizk et al., 1991). The same shape parameters were assigned to the task durations 

in all cases, regardless of bricklayers or wall sections. Table 7.10 shows the values of the 

beta function parameters for the gang of model bricklayers 2 and 5 for model wall section 

#2 constructed from gray bricks.  
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WS2.2 BL2 BL5 BL2+5 
(BG2) 

a (min) b (max) α β 

duration, [h] 4.434 2.567 1.626 1.138 2.114   

shape 

parameter, [-] 

     4 4 

Table 7.10 Calculation of the duration of activity laying bricks 

 

7.5 Running the model 

To build the DES model component, the bricklaying process shown in Figure 7.6 needed to 

be created in the simulation software. Then the task durations were calculated and input 

into the model. Finally, the labour resources were assigned to the activities. While the 

process was the same, the task durations and the assigned resources were different in 

different groups of runs. Two rounds of simulation runs were recorded and analysed.    
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7.5.1 First batch of simulation runs  

In the first batch of simulation runs, the process durations were recorded after each run to 

examine the effects of the three factors shown in Table 7.11: model bricklaying gang, model 

wall section, and brick type. The aim was to investigate which model bricklaying gang 

worked faster, whether there was one that was better suited for a model wall section or a 

brick type.  

Factor/Scale 1 2 3 
Model bricklaying 

gang (BG) 
BL1+BL6 (BG1) BL2+BL5 (BG2) BL3+BL4 (BG3) 

Model wall section 

(WS) 

Model wall section 

#1 (WS1) 

Model wall section 

#2 (WS2) 

Model wall section 

#3 (WS3) 

Brick type (BT) Red (BT1) Gray (BT2) Blue (BT3) 
Table 7.11 Factors in the first batch of simulation runs 

 

Altogether six model wall section and brick type combinations were defined. These are 

shown in Table 7.4. Three model bricklaying gangs were created (see Table 7.8). Therefore, 

18 scenarios were tested in total with 100 simulation runs for each, resulting in 1800 runs. 

In each run, 50 model wall sections were built. 

The workflow created in the simulation software was the same as the one shown in Figure 

7.6. The task duration of the activity laying bricks was calculated based on the process 

described in the previous section. An example of the activity duration entered into the model 

can be seen in Table 7.10. A different activity duration needed to be calculated for all 18 

scenarios. Table 7.2 contains an example for the activity durations of the other tasks. The 

activity duration of jointing was different for the six model wall section-brick type 

combinations. As for the resources, two labourers were assigned to the preparation activity, 

while one model bricklaying gang performed the other tasks. 

 

7.5.2 Second batch of simulation runs 

In the second batch of simulation runs, the process durations were recorded after each run 

to examine the effects of the three factors shown in Table 7.12: bricklaying gang 

composition, model wall section, and brick type. The aim was to investigate which 

bricklaying gang composition could achieve shorter process duration, whether one of them 

was better suited for a model wall section or a brick type. 
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Factor/Scale 1 2 3 
Bricklaying gang 

composition (BLC) 
Mixed (BLC1) Straight (BLC2) - 

Model wall section 

(WS) 

Model wall section 

#1 (WS1) 

Model wall section 

#2 (WS2) 

Model wall section 

#3 (WS3) 

Brick type (BT) Red (BT1) Gray (BT2) Blue (BT3) 
Table 7.12 Factors in the second batch of simulation runs 

 

The two types of bricklaying gang compositions are explained in Table 7.13. In the case of 

the mixed one, the same bricklaying gangs are defined as in the previous batch of simulation 

runs. The straight composition means that every model bricklayer is paired with another 

with the same skills and experience. 

 

 Mixed (BLC1) Straight (BLC2) 
1 BL1+BL6 BL1+BL1 

2 BL1+BL6 BL2+BL2 

3 BL2+BL5 BL3+BL3 

4 BL2+BL5 BL4+BL4 

5 BL3+BL4 BL5+BL5 

6 BL3+BL4 BL6+BL6 
Table 7.13 Mixed and straight pairings of bricklayers 

 

Altogether six model wall section and brick type combinations were defined. These are 

shown in Table 7.4. Two model bricklaying gang compositions were defined (see Table 

7.13). Therefore, 12 scenarios were tested in total with 20 simulation runs for each, resulting 

in 240 runs. In each run, 100 model wall sections were built. 

The workflow created in the simulation software was the same as the one shown in Figure 

7.6. The task duration of the laying bricks activity was calculated based on the process 

described in the previous section. For a mixed bricklaying gang, an example of the activity 

duration entered into the model can be seen in Table 7.10. In the case of, for instance, the 

BL1+BL1 gang, the activity duration was first calculated for one BL1 bricklayer, then it was 

divided by 2 for the two bricklayers in the gang. A different activity duration needed to be 

calculated for the different bricklaying gangs in the case of every model wall-section-brick 

type combination. Table 7.2 contains an example for the activity duration of the other tasks. 

The activity duration of jointing was different for the six model wall section-brick type 

combinations. As for the resources, two labourers were assigned to the preparation activity, 

while six bricklaying gangs (see Table 7.13) performed the other tasks. 
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7.6 Chapter summary 

This the third of three chapters discussing the developed hybrid DES-ANN model. Chapter 

4 gave an overview of the model, while Chapter 5 discussed the ANN model component. In 

this chapter, first, simulation methods were introduced describing the concept of the 

methods. Then the framework developed for productivity modelling with simulation was 

presented. The steps of creating a simulation model were explained in detail, showing the 

options that need to be considered. In the next section, the choices made for the DES 

component of the model were explained using the framework. Building the DES model 

component started with defining the workflow of the bricklaying process, then the task 

durations were entered, finally the resources were assigned to the activities. For testing the 

model, a model project was defined, which consisted of creating model wall sections and 

model bricklayers. These provided the input data for the ANN model component, the output 

(productivity rate) of which became the input (task duration of activity laying bricks) for the 

DES model component. The calculations necessary for converting the ANNs’ output into 

the DES’ input were explained in detail. The last section discussed the two batches of 

simulation runs. The results from these runs and their analysis can be found in Chapter 8.   
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CHAPTER 8 

SUMMARY RESULTS, ANALYSIS, AND DISCUSSION 

 

8.1 Results of the analysis of the collected data 

As detailed in Section 3.5, productivity measurements with the corresponding bricklayer 

and wall attributes were collected through structured observations at two construction sites. 

After processing the data as described in Section 3.6, the data table was used to train and 

test the ANN model component and statistical analyses were also performed on it. Chapters 

5 and 6 contain the details respectively.  

One of the questions that needed to be answered was how the productivity rate changed 

due to the changes of the selected factors introduced in Section 4.1.2. Table 8.1 

summarises how the productivity rate changes when the value of the factor increases based 

on the statistical analyses and the sensitivity analysis of the ANN model component. For 

example, when the value of the independence factor increases, the productivity rate also 

increases, according to the multiple regression analyses and the ANN model component. 

Based on the simple regression analysis, there is an inverse relationship between 

independence and the productivity rate: when the value of the independence factor 

increases, the productivity rate decreases. In the case of regression analysis, the sign of 

the b values indicates the relationship between the dependent (productivity rate) and the 

independent variables (factors). If the b value is positive, the outcome, here the productivity 

rate, and the predictor, i.e., the factor, change the same way. If the t-test is significant, the 

predictor’s contribution to the model is significant, meaning that it significantly predicts the 

productivity rate. In Table 8.1, these significant contributions are marked by underlining. For 

instance, the independence factor’s contribution to the multiple regression models was 

significant. The simple regression analysis was described in Section 6.5.1, the results were 

shown in Table 6.22. The various multiple regression analyses performed were detailed in 

Section 6.5.2, and the b values and t-test results were included in Tables 6.25 (for all 

factors), 6.29 (for all factors, backward method), and 6.33 (for selected factors). The last 

column of Table 8.1 lists the conclusions drawn from the sensitivity analysis of the three 

selected, trained and tested artificial neural networks. The analysis was detailed in Section 

5.5, and the corresponding graphs were Figures 5.10 through 5.16. In the case of the 

analyses listed in Table 8.1, productivity rate was given in bricks/h dimension; therefore, an 

increase means better productivity, quicker construction. 
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Factor Simple 
regression 

analysis 

Multiple regression analysis ANN model 
component All factors All factors, 

backward 
Selected 
factors 

Quality Increase Increase Not 

included 

Not 

included 

Increase 

Perceived 

speed 

Increase Decrease Decrease Decrease Increase 

Knowledge Increase Decrease Decrease Not 

included 

Decrease 

Independence Decrease Increase Increase Increase Increase 

Experience Increase Increase Increase Increase Increase 

Course 

difficulty 

Decrease Decrease Decrease Decrease Decrease 

Brick type Decrease Decrease Decrease Decrease Decrease 
Table 8.1 Does the productivity rate increase or decrease when the factor’s value increases? 

 

It can be seen in Table 8.1 that all analyses showed the same results and all of them were 

significant, as well, in the case of experience, course difficulty, and brick type. Therefore, 

these three seem to be the most important factors affecting the productivity rate out of the 

seven listed factors.  

Based on the results, the more experienced a bricklayer is, the more time they work in 

construction, the faster they can work. In contrast, for example, Horner and Talhouni (1995) 

argued that speed first increased, then decreased with experience. It was mentioned in the 

interviews that more experienced bricklayers might be less willing to adapt to the newer 

technologies, for instance, the thin-joint technology. However, the bricks and the technology 

used at the observed projects can be considered traditional. The observations suggested 

that more experienced bricklayers could work faster, achieving higher productivity because 

their movements had become almost automatic, they needed to check their work less, and 

were usually better organised, having all necessary materials and tools in the right place to 

minimise the need for unnecessary movements. Among the worker attributes included in 

the factors, experience seems to be the most essential.  

Both wall characteristics – course difficulty and brick type – are significant, as well. Both 

show the same trend: construction tends to get slower as the difficulty of the laying of the 

courses or the usage of the materials increase. As described in Section 4.1.2, straight 

courses with only half-cuts are at one end of the scale, while courses with openings and 

custom cuts are on the other. The difference in difficulty makes a significant difference in 

construction time, as well. The same is true for the brick type, which also reflects a ranking 

in difficulty from red to blue bricks. As the results show, the laying of the blue bricks takes 

significantly longer than that of the red bricks. 
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Independence, defined as knowing what to do without constant supervision, also made a 

significant contribution to the multiple regression models. According to these and the ANN 

sensitivity analysis, the more independent the bricklayer, the higher their productivity rate. 

This can be because independence might also increase with time; therefore, the bricklayers 

are also more skilled, and can achieve higher productivity. 

Perceived speed, which is a significant factor in one of the multiple regression models, 

shows mixed results. The values of this factor, quality, knowledge, and independence came 

from the questionnaire filled in by the bricklayers’ supervisors and the variation might be 

due to the difference between the supervisors’ subjective opinion and the objective time 

measurements. 

According to the results, if quality increases, the productivity rate also increases. Both the 

interviews and the supervisors’ evaluation suggested that more experienced bricklayers 

produced better quality work. Since they also tend to work faster, this might explain this 

result. The interviews suggested the need to balance between quality and speed. At the 

colleges, the students focus on keeping to the standards in order for the quality to be 

satisfactory and learn how to gain speed with time. This method is the opposite of what 

Gilbreth (1909) recommended. He believed that the bricklayers needed to be taught the 

most effective way of laying bricks possible, and they should perform the movements as 

quickly as possible, their skills would develop with practice. 

Based on the analyses, knowledge seems to have an inverse relationship with productivity: 

as it increases, the productivity rate decreases. Only the result of the simple regression 

analysis and one ANN (network C) show an opposite, increasing trend. This would be more 

in line with the logical assumption that knowledge – similarly to independence and quality – 

also increases with time; therefore, a more knowledgeable bricklayer could be expected to 

work faster, as well. 

In addition to the regression analyses, parametric (ANOVA/Welch’s and Brown-Forsythe’s 

tests) and non-parametric (Kruskal-Wallis) tests were also performed on the data table. As 

some groups of the factors followed a normal distribution, while others were non-normal, 

and some factors had homogeneous variances, while others had heterogeneous variances, 

both kinds of tests were run. The results of these can be seen in Table 8.2. It summarises 

the contents of Tables 6.8, 6.10, 6.11, and 6.12. The effects were calculated based on the 

parametric test results.      
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Factor Parametric Non-parametric 
ANOVA/Robust 

tests 
Effect Kruskal-Wallis 

Quality Not significant - Not significant 

Perceived speed Significant Small Not significant 

Knowledge Not significant - Not significant 

Independence Not significant - Not significant 

Experience Significant Medium Significant 

Course difficulty Significant Small Significant 

Brick type Significant Large Significant 
Table 8.2 Results of parametric and non-parametric tests (gray background: factor’s effect on the 

productivity rate is significant) 

 

According to Table 8.2, both parametric and non-parametric tests showed that experience, 

course difficulty, and brick type had a significant effect on the productivity rate. These results 

are congruent with the ones mentioned previously in this section. 

  

8.2 Analysis of DES model component output 

8.2.1 Analysis of the output of the first batch of runs  

8.2.1.1 Descriptive statistics and factors analysed  

As explained in the Section 7.5.1, the DES model component was run 100 times for each 

bricklaying gang-brick type-model wall section configuration. The activity duration of the 

jointing task was determined by the brick type and model wall section combination, while 

the duration of the activity laying bricks was calculated based on the output of the ANN 

model component, where the model bricklayer, brick type and course difficulty 

characteristics were entered. The DES model component provided the project duration, 

which then needed to be divided by the total number of bricks (for the 50 wall sections) used 

for the built wall sections in order to compare the different configurations. This way the 

productivity rates were given in seconds/brick dimension. (This means that the higher the 

value, the slower the construction.) The descriptive statistics for these productivity rates can 

be seen in Table 8.3 and the histogram in Figure 8.1. 
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 Productivity 
Rate 

Number of data points 1800 

Minimum [s/brick] 15.65 

Maximum [s/brick] 35.64 

Mean [s/brick] 22.02 

Standard Deviation [s/brick] 5.333 

Variance [(s/brick)2] 28.44 

Skewness  1.246 

Standard Error of Skewness 0.058 

Kurtosis 0.446 

Standard Error of Kurtosis 0.115 
Table 8.3 Descriptive statistics for productivity rate 

 

 
Figure 8.1 Histogram of productivity rate 

 

Table 8.4 contains the list of factors with their scales explained. Moreover, it shows the 

abbreviations used later in this chapter. For example, WS1 stands for model wall section 

#1, and BG1 refers to the bricklaying gang composed of BL1 and BL6 model bricklayers 

introduced in Section 7.3.1. 
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Factor/Scale 1 2 3 
Model bricklaying 

gang (BG) 
BL1+BL6 (BG1) BL2+BL5 (BG2) BL3+BL4 (BG3) 

Model wall section 

(WS) 

Model wall section 

#1 (WS1) 

Model wall section 

#2 (WS2) 

Model wall section 

#3 (WS3) 

Brick type (BT) Red (BT1) Gray (BT2) Blue (BT3) 
Table 8.4 Factors and their scales 

 

Statistical analyses were run to see how the above factors affect the productivity rates. The 

analyses were performed according to Field (2009) and using IBM SPSS Statistics 26  and 

MS Excel 2016 software. The level of significance is 0.05, unless stated otherwise. 

Table 8.5 contains the most common abbreviations and notations used in the coming tables. 

 

Abbreviation Meaning 
Sig. significance 

df degrees of freedom 
Table 8.5 Common abbreviations 

 

8.2.1.2 Error bars 

The error bars showing the 95% confidence intervals for the different groups of each factor 

can be seen in Figure 8.2. The mean productivity rate values in s/brick for every category 

are labelled. Due to the chosen dimension, the higher the value, the slower the works are 

performed. The following tests showed whether the differences between the categories 

were significant. Looking at the depicted means in the graphs below, trends can be 

observed. For example, in the case of brick type, blue bricks are laid slower than gray ones, 

and walls of red ones are the fastest to build. This is in line with the previously drawn 

conclusions. However, it is worth noting that these only show the means when the grouping 

is done for only one factor. For instance, the graph of the model wall sections suggests that 

the construction is quicker for the supposedly more difficult wall sections, that the more 

complex it is, the faster it can be built. This is most likely because the more difficult brick 

types are only used for the easier wall sections. In Figure 8.3, the mean productivity rates 

for the model wall sections are shown separately for the three brick types. As shown, the 

mean productivity rates increase from the easier to the more difficult wall sections and from 

the red to the blue bricks within one type of wall section. The possible effect of the assigned 

bricklaying gang is not shown. Figure 8.4 depicts the productivity rates in the same way as 

Figure 8.3; however, only for one model bricklaying gang (BG3). This graph suggests the 

same trends as the one in Figure 8.3.  
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Figure 8.2 Error bars 

 

 

 
Figure 8.3 Mean productivity rates per model wall section for each brick type 
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Figure 8.4 Mean productivity rates per model wall section for each brick type for the BG3 model 

bricklaying gang 

 

8.2.1.3 Normality and homogeneity of variance 

To select the appropriate tests, it needed to be determined whether the variables followed 

a normal distribution, and their variances were homogenous between the categories of the 

factors. These assumptions of normality and homogeneity need to be met, in the case of 

parametric tests, for the F statistic, the output of the tests, to be reliable. 

The productivity rates at every level of each variable were checked for normality because 

for the tests, this is what matters, and not the overall normality. The analyses included 

running the Kolmogorov-Smirnov and Shapiro-Wilk tests. Based on the tests, it can be 

concluded that all the categories were significantly non-normal. Table 8.6 summarises the 

results of the normality tests.  
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Factor Cat. N Kolmogorov-
Smirnov 

Shapiro-Wilk Normal? 

D Sig. D Sig. 
WS WS1 900 0.180 0.000 0.828 0.000 no 

 WS2 600 0.119 0.000 0.922 0.000 no 

 WS3 300 0.055 0.031 0.984 0.002 no 

BT BT1 900 0.199 0.000 0.860 0.000 no 

 BT2 600 0.184 0.000 0.837 0.000 no 

 BT3 300 0.210 0.000 0.841 0.000 no 

BG BL1 600 0.287 0.000 0.770 0.000 no 

 BL2 600 0.236 0.000 0.817 0.000 no 

 BL3 600 0.311 0.000 0.755 0.000 no 
Table 8.6 Results of the normality tests (D: test statistic, Cat.: category) 

 

Besides normality, the homogeneity of variance was also checked by using Levene’s test. 

Based on this test, it can be concluded that the variances are significantly different in the 

case of all the factors. The results are included in Table 8.7. 

 

Factor F df1 df2 Sig. Homogenous? 
WS 979.451 2 1797 0.000 no 

BT 53.718 2 1797 0.000 no 

BG 11.808 2 1797 0.000 no 
Table 8.7 Results of Levene’s test (F: Levene test statistic) 

 

8.2.1.4 Non-parametric tests 

Since the tests showed that the distribution of the productivity rates was non-normal and 

the variances were heterogeneous, the criterion for parametric tests were not met. 

Therefore, non-parametric tests were performed to determine whether the productivity rate 

is affected by the factors. The categories within one factor were compared to each other. 

The Kruskal-Wallis test, the non-parametric equivalent of the one-way independent 

ANOVA, was used to see the differences between the categories. If it is significant, the 

given factor significantly affects the dependent variable. In this case, all factors were found 

to significantly affect the productivity rate. The details are shown in Table 8.8. 
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Factor Kruskal-Wallis Jonckheere-Terpstra 
 H df Sig. z Sig. order 
WS 26.316 2 0.000 -4.428 0.000 descending 

BT 984.491 2 0.000 32.364 0.000 ascending 

BG 89.952 2 0.000 -8.447 0.000 descending 
Table 8.8 Results of the Kruskal-Wallis and Jonckheere-Terpstra tests (H: Kruskal-Wallis test 

statistic, z: standardised Jonckheere-Terpstra test statistic) 

 

The Kruskal-Wallis test can determine if the factor has an effect on the dependent variable; 

however, it cannot show trends. Jonckheere-Terpstra tests were performed to determine 

whether the categories’ order is meaningful. The sign of the test statistic indicates an 

ascending, in the case of a positive number, or a descending order of medians, in the case 

of a negative one. For example, in the case of brick type, the medians of the groups are in 

an ascending order from BT1 (red), through BT2 (gray) to BT3 (blue), that is, the productivity 

rate significantly increases, meaning that construction is slower. The results of this test can 

be seen in Table 8.8.  

                                                                            𝑟𝑟 =
𝑧𝑧
√𝑁𝑁

                                                                         (1) 

where z: standardised Kruskal-Wallis test statistic, N: sample/group size. 

 

Effect size (r) Effect 
> 0.1 small 

> 0.3 medium 

> 0.5 large 
Table 8.9 Effect sizes 

 

With the significant Kruskal-Wallis tests, pairwise comparisons were also performed. The 

details of the significant ones can be seen in Table 8.10. The significance column contains 

the adjusted significance values, which are determined based on the Bonferroni correction. 

To minimise the Type I errors, the scores’ significance values were multiplied by the number 

of possible comparisons for each factor. For instance, in the case of brick type, there were 

three possible comparisons (BT1vBT2, BT1vBT3, BT2vBT3); therefore, the original 

significance value was multiplied by 3. Then these corrected significance values were 

compared to the 0.05 significance level. The effect size was calculated according to (1). 

The effect was determined based on Table 8.9.  
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Contrast 
2-tailed/ 
1-tailed 

z Sig. N Effect size Effect 

WS1vWS3 2-tailed 4.849 0.000 1200 0.140 small 

WS2vWS3 2-tailed 4.613 0.000 900 0.154 small 

BT1vBT2 2-tailed -15.327 0.000 1500 -0.396 medium 

BT1vBT3 2-tailed -30.820 0.000 1200 -0.890 large 

BT2vBT3 2-tailed -17.634 0.000 900 -0.588 large 

BG1vBG2 2-tailed 8.112 0.000 1200 0.234 small 

BG1vBG3 2-tailed 8.311 0.000 1200 0.240 small 
Table 8.10 Results of the pairwise comparisons (z: standardised test statistic, N: group size) 

 

According to Table 8.10, the productivity rate for building with blue bricks (BT3) is 

significantly higher (meaning that construction is slower) than that of the other two materials. 

Moreover, the productivity rate for the gray bricks (BT2) is significantly higher than that of 

the red bricks (BT1). The productivity rates of the model bricklaying gangs #2 (BG2) and #3 

(BG3) are significantly lower (meaning that they work faster) than that of model bricklaying 

gang #1.   

Based on the non-parametric tests performed, it can be concluded that all three factors 

significantly affect the productivity rate. 

 

8.2.1.5 Mean productivity rates per factor 

During the simulation runs in this batch, the same amount of wall sections was built by the 

bricklaying gangs listed in Table 8.4. The mean productivity rates for the three model 

bricklaying gangs in the case of the different brick types and model wall sections are 

depicted in Figures 8.5 through 8.8. In the case of each model wall section a different 

bricklaying gang is most productive. Figure 8.7 shows that model bricklaying gang #2 can 

build model wall section #1 the fastest regardless of the brick type used. In the case of 

model wall section #2, model bricklaying gang #1 might be recommended regardless of 

brick type (see Figure 8.8), while the construction of model wall section #3 might benefit 

from model bricklaying gang #3. Figures 8.5 and 8.6 show that – apart from model wall 

section #2 – model bricklaying gang #1 tends to be the slowest. This gang is composed of 

the least and most experienced model bricklayers; therefore, it might be beneficial to have 

more balanced gangs, meaning pairing bricklayers with more similar scores. Figures 8.7 

and 8.8 show that the performance of the other two model bricklaying gangs tends to be 

closer to each other, with bricklaying gang #2 doing slightly better. It can also be seen from 

these two graphs that – regardless of the wall section and the bricklaying gang – 

construction time increases from red bricks to gray bricks to blue bricks. This is consistent 

with the findings presented in the previous section and the test results shown in this one 
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and can be explained by the more complicated nature of laying the bricks and executing 

the jointing. Figures 8.5 and 8.6 show the increasing difficulty of the model wall sections 

from #1 to #3 as the latter generally takes more time to build. However, this is not true for 

model bricklaying gang #1.  

 

 
Figure 8.5 Mean productivity rates per model wall section for each model bricklaying gang for red 

bricks 

 

 
Figure 8.6 Mean productivity rates per model wall section for each model bricklaying gang for gray 

bricks 
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Figure 8.7 Mean productivity rates per brick type for each model bricklaying gang for model wall 

section #1 

 

 
Figure 8.8 Mean productivity rates per brick type for each model bricklaying gang for model wall 

section #2 
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8.2.2 Analysis of the output of the second batch of runs 

8.2.2.1 Descriptive statistics and factors analysed 

As explained in Section 7.5.2, the DES model component was run 20 times for each 

bricklaying gang composition-brick type-model wall section configuration. The activity 

duration of the jointing task was determined by the brick type and model wall section 

combination, while the duration of the laying bricks activity was calculated based on the 

output of the ANN model component, where the model bricklayer, brick type and course 

difficulty characteristics had been entered. The DES model component provided the project 

duration, which then needed to be divided by the total number of bricks (for the 100 wall 

sections) used for the built wall sections for the comparison of the different configurations. 

This way the productivity rates were given in seconds/brick dimension. The descriptive 

statistics for these productivity rates can be seen in Table 8.11 and the histogram in Figure 

8.9. 

 

 Productivity 
Rate 

Number of data points 240 

Minimum [s/brick] 3.88 

Maximum [s/brick] 10.30 

Mean [s/brick] 5.840 

Standard Deviation [s/brick] 1.254 

Variance [(s/brick)2] 1.573 

Skewness  0.908 

Standard Error of Skewness 0.157 

Kurtosis 0.322 

Standard Error of Kurtosis 0.313 
Table 8.11 Descriptive statistics for productivity rate 
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Figure 8.9 Histogram of productivity rate 

Table 8.12 contains the list of the factors with their scales explained. Moreover, it shows the 

abbreviations used later in this chapter. For example, BT1 stands for red bricks. The 

bricklaying composition is further explained in Table 8.13 using the abbreviations for the 

model bricklayers introduced in Section 7.3.1. 

 

Factor/Scale 1 2 3 
Bricklaying gang 

composition (BLC) 
Mixed (BLC1) Straight (BLC2) - 

Model wall section 

(WS) 

Model wall section 

#1 (WS1) 

Model wall section 

#2 (WS2) 

Model wall section 

#3 (WS3) 

Brick type (BT) Red (BT1) Gray (BT2) Blue (BT3) 
Table 8.12 Factors and their scales 

 

 Mixed Straight 
1 BL1+BL6 BL1+BL1 

2 BL1+BL6 BL2+BL2 

3 BL2+BL5 BL3+BL3 

4 BL2+BL5 BL4+BL4 

5 BL3+BL4 BL5+BL5 

6 BL3+BL4 BL6+BL6 
Table 8.13 Mixed and straight pairings of bricklayers 
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8.2.2.2 Error bars 

The error bars showing the 95% confidence intervals for the different groups of each factor 

can be seen in Figure 8.10. The mean productivity rate values in s/brick for every category 

are labelled. Due to the chosen dimension, the higher the value, the slower the works are 

performed. The following tests showed whether the differences between the categories 

were significant. Looking at the depicted means in the graphs below, trends can be 

observed. For example, in the case of brick type, blue bricks are laid slower than gray ones, 

and walls of red ones are the fastest to build. This is in line with the previously drawn 

conclusions. The graph of the bricklaying gang composition suggests that mixed gangs 

work faster. However, it is worth noting that these only show the means when the grouping 

is done for only one factor. For instance, the graph of the model wall sections suggests that 

the construction is quicker for the supposedly more difficult wall sections, that the more 

complex it is, the faster it can be built. This is most likely because the more difficult brick 

types are only used for the easier model wall sections in the model project.  
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Figure 8.10 Error bars 

 

8.2.2.3 Normality and homogeneity of variance 

To select the appropriate test, it needed to be determined whether the variables followed a 

normal distribution, and their variances were homogenous between the categories of the 

factors. These assumptions of normality and homogeneity need to be met, in the case of 

parametric tests, for the F statistic, the output of the tests, to be reliable. 

The productivity rates at every level of each variable were checked for normality because 

for the tests, this is what matters, and not the overall normality. The analyses included 

running the Kolmogorov-Smirnov and Shapiro-Wilk tests. The tests showed that some 
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groups followed a normal distribution, while others did not. Table 8.14 summarises the 

results of the normality tests.  

Factor Cat. N Kolmogorov-
Smirnov 

Shapiro-Wilk Normal? 

D Sig. D Sig. 
WS WS1 120 0.106 0.002 0.945 0.000 no 

 WS2 80 0.119 0.007 0.954 0.006 no 

 WS3 40 0.164 0.009 0.932 0.019 no 

BT BT1 120 0.132 0.000 0.931 0.000 no 

 BT2 80 0.086 0.200 0.980 0.252 yes 

 BT3 40 0.091 0.200 0.974 0.483 yes 

BLC BLC1 120 0.215 0.000 0.834 0.000 no 

 BLC2 120 0.058 0.200 0.981 0.082 yes 
Table 8.14 Results of the normality tests (D: test statistic, Cat.: category, gray background: normal 

distribution) 

 

Besides normality, the homogeneity of variance was also checked by using Levene’s test. 

Based on the test, it can be concluded that the variances are significantly different in the 

case of model wall section and brick type. The results are included in Table 8.15. 

 

Factor F df1 df2 Sig. Homogenous? 
WS 18.455 2 237 0.000 no 

BT 3.759 2 237 0.025 no 

BLC 0.701 1 238 0.403 yes 
Table 8.15 Results of Levene’s test (F: Levene test statistic, gray background: homogeneity of 

variance) 

 

The results of the normality and Levene’s tests show that while the scores of some 

categories follow a normal distribution, and the variances of the groups in some factors are 

homogenous, others are non-normal and heterogeneous. Due to this, both parametric and 

non-parametric tests were performed to determine whether the productivity rate is affected 

by the factors. In the case of both types of tests, the categories within one factor were 

compared to each other. 

 

8.2.2.4 Parametric tests 

From the parametric tests, ANOVA is used to determine whether the selected factors have 

an influence on the dependent variable, i.e., the productivity rate. It is a parametric test; 

therefore, it assumes a normal distribution. Table 8.16 summarises the main results of the 
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tests. If the variances of the categories are significantly different from each other, Welch’s 

F has to be checked. If this is significant, that means that the factor influences the dependent 

variable, which is now the productivity rate. This is the case for model wall section and brick 

type. Table 8.18 contains the results of Welch’s test. The effect size was calculated 

according to (2) (Horn, 2006). The effects were determined based on Table 8.17. The 

implications of the Brown-Forsythe test being significant are the same as that of Welch’s F 

being significant. Table 8.19 contains the results for this test. The effect sizes were 

calculated according to (2) and the effects were determined based on Table 8.17. The 

Brown-Forsythe test gave the same results as Welch’s. 

 

Factor Variances 
ANOVA/Robust 

tests 
Significant 
contrasts 

Significant post-
hoc tests  

WS 
significantly 

different 

Welch’s: significant 

Brown-Forsythe: 

significant 

 WS1 vs. 

WS2&WS3 

 WS3 vs. 

WS1&WS2 

 WS1 vs. WS2 

 WS1 vs. WS2 

 WS1 vs. WS3 

BT 
significantly 

different 

Welch’s: significant 

Brown-Forsythe: 

significant 

 BT1 vs. 

BT2&BT3 

 BT2 vs. BT3 

 BT3 vs. 

BT1&BT2 

 BT1 vs. BT3 

 BT2 vs. BT3 

BLC 
not 

significantly 

different 

ANOVA: significant   

Table 8.16 Parametric test results 

 

                                                                𝜔𝜔2 =
𝑑𝑑𝑑𝑑1 ∗ (𝐹𝐹 − 1)

𝑑𝑑𝑑𝑑1 ∗ (𝐹𝐹 − 1) + 𝑁𝑁
                                                            (2) 

where F: Welch’s/Brown-Forsythe F, N: sample size. 

 

Effect size (ω2) Effect 
> 0.01 small 

> 0.06 medium 

> 0.14 large 
Table 8.17 Effect sizes 
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Factor Welch’s F df1 df2 Sig. Effect size Effect 
WS 9.796 2 123.071 0.000 0.125 medium 

BT 131.958 2 106.229 0.000 0.680 large 
Table 8.18 Results of Welch’s test 

 

Factor Brown-Forsythe F df1 df2 Sig. Effect size Effect 
WS 11.438 2 220.333 0.000 0.145 large 

BT 140.599 2 153.857 0.000 0.694 large 
Table 8.19 Results of Brown-Forsythe’s test 

 

In the case of the variances being homogenous, the ANOVA table has to be looked at. This 

was the case for bricklaying gang composition. The test was significant. The results can be 

seen in Table 8.20. The effect size was calculated based on (3), and the effect was 

determined according to Table 8.17. 

 

                                                                𝜔𝜔2 =
𝑆𝑆𝑆𝑆𝑀𝑀 − 𝑑𝑑𝑑𝑑𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑅𝑅

𝑆𝑆𝑆𝑆𝑇𝑇 + 𝑀𝑀𝑀𝑀𝑅𝑅
                                                             (3) 

where SSM: between group effect (sum of squares model), dfM: degrees of freedom for the 

effect, MSR: residual mean squared error, SST: total amount of variance in the data (sum of 

squares total). 

 

Factor F-ratio Sig. SSM SST MSR dfM Effect size Effect 
BLC 7.886 0.005 12.060 376.018 1.529 1 0.0279 small 

Table 8.20 Results of ANOVA 

 

Table 8.21 shows the main ANOVA summary table for bricklaying gang composition. The 

combined between group effect is the overall effect due to the model, while the within groups 

effect is the unsystematic variation in the data existing due to individual differences between 

the groups. Since the F-ratio value corresponding to the former is significant, bricklaying 

gang composition has a significant effect on the productivity rate. The F-ratio of the linear 

term is significant suggesting a linear trend. 
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Bricklaying 
gang 
composition 

  
Sum of 

Squares 
df 

Mean 
Square 

F Sig. 

Between 

Groups 
(Combined)  

12.060 1 12.060 7.886 0.005 

 
Linear 

Term 
Contrast 

12.060 1 12.060 7.886 0.005 

Within Groups   363.958 238 1.529   

Total   376.018 239    
Table 8.21 ANOVA results for bricklaying gang composition 

 

Since the previous tests only show that the given factor has some effect on the dependent 

variable, planned contrasts and post-hoc tests were used to see where the differences lie, 

in the case of the factors with three categories. Table 8.22 summarises the orthogonal 

contrasts tested for the factors. First, the lowest score was selected as a baseline, and the 

other two categories were compared to this. Then the second lowest score was compared 

to the lowest score. After this, another set of comparisons were performed. This time the 

highest score was chosen as the baseline and compared to the lower scores. Then the 

middle one was compared to the lowest score. The significant contrasts are listed in Table 

8.24. 

 

  I II  I II 

WS, 
BT 

1 -2 0  1 -1 

2 1 -1  1 1 

3 1 1  -2 0 
Table 8.22 Contrasts for the model wall section and brick type variables 

 

The results for those contrasts that were significant are shown in Table 8.24. It also lists the 

effect sizes, which were calculated according to (4), while the effects were determined 

based on Table 8.23. 

                                                                 𝑟𝑟 = �
𝑡𝑡2

𝑡𝑡2 + 𝑑𝑑𝑑𝑑
                                                                     (4) 

 

Effect size (r) Effect 
> 0.1 small 

> 0.3 medium 

> 0.5 large 
Table 8.23 Effect sizes 
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Comparisons t Sig. 
2-tailed/ 
1-tailed 

df Effect size Effect 

WS1 vs. WS2&WS3 -4.258 0.000 2-tailed 191.391 0.2942 small 

WS3 vs. WS1&WS2 3.56 0.001 2-tailed 74.727 0.3808 medium 

WS1 vs. WS2 -3.079 0.002 2-tailed 197.774 0.2139 small 

BT1 vs. BT2&BT3 11.52 0.000 2-tailed 179.216 0.6523 large 

BT2 vs. BT3 14.634 0.000 2-tailed 67.157 0.8725 large 

BT3 vs. BT1&BT2 -16.254 0.000 2-tailed 54.744 0.9101 large 
Table 8.24 Results of the significant contrasts 

 

For post-hoc tests, in the case of homogenous variances, Hochberg’s GT2 and Gabriel’s 

procedures were selected as they can deal with unequal sample sizes. The Games-Howell 

procedure was chosen for heterogeneous variances because that can also handle different 

sample sizes. The significant tests are listed in Table 8.16. These results are in line with the 

significant contrasts. 

 

8.2.2.5 Non-parametric tests 

The Kruskal-Wallis test, the non-parametric equivalent of the one-way independent 

ANOVA, was used to see the differences between the categories. If it is significant, the 

given factor significantly affects the dependent variable. In this case, all three factors were 

found to significantly affect the productivity rate. The details are shown in Table 8.25. 

 

Factor Kruskal-Wallis Jonckheere-Terpstra 
 H df Sig. z Sig. order 
WS 10.754 2 0.005 -3.313 0.001 descending 

BT 92.731 2 0.000 8.363 0.000 ascending 

BLC 16.283 1 0.000 4.035 0.000 ascending 
Table 8.25 Results of the Kruskal-Wallis and Jonckheere-Terpstra tests (H: Kruskal-Wallis test 

statistic, z: standardised Jonckheere-Terpstra test statistic) 

 

The Kruskal-Wallis test can determine if the factor has an effect on the dependent variable; 

however, it cannot show trends. Jonckheere-Terpstra tests were performed to determine 

whether the categories’ order is meaningful. The sign of the test statistic indicates an 

ascending, in the case of a positive number, or a descending order of medians, in the case 

of a negative one. For example, in the case of brick type, the medians of the groups are in 

an ascending order from BT1 (red), through BT2 (gray) to BT3 (blue), the productivity 

significantly increases. Bricklaying gang composition also shows an ascending order from 

BLC1 (mixed) to BLC2 (straight). The results of this test can be seen in Table 8.25. 
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With the significant Kruskal-Wallis tests, pairwise comparisons were also performed. The 

details of the significant ones can be seen in Table 8.26. The significance column contains 

the adjusted significance values, which are determined based on the Bonferroni correction. 

To minimise the Type I errors, the scores’ significance values were multiplied by the number 

of possible comparisons for each factor. For instance, in the case of brick type, there were 

three possible comparisons (BT1vBT2, BT1vBT3, BT2vBT3); therefore, the original 

significance value was multiplied by 3. Then these corrected significance values were 

compared to the 0.05 significance level. The effect size was calculated according to (1). 

The effect was determined based on Table 8.9.  

  

Contrast 
2-tailed/ 
1-tailed 

z Sig. N Effect size Effect 

WS1vWS3 2-tailed 3.136 0.005 160 0.248 small 

BT1vBT3 2-tailed -9.563 0.000 160 -0.756 large 

BT2vBT3 2-tailed -7.560 0.000 120 -0.690 large 
Table 8.26 Results of the pairwise comparisons (z: standardised test statistic, N: group size) 

 

According to Table 8.26, the productivity rate for building with blue bricks is significantly 

higher (meaning that construction is slower) than that of the other two materials. Based on 

the non-parametric tests performed, it can be concluded that all three factors significantly 

affect the productivity rate. 

 

8.2.2.6 Mean productivity rates per factor 

During the simulation runs in this batch – on average – equal amounts of wall sections were 

built by the bricklaying gangs listed in Table 8.13. The mean productivity rates for the two 

bricklaying gang composition options in the case of the different brick types and model wall 

sections are depicted in Figures 8.11 through 8.14. It can be seen that the gangs with mixed 

composition worked faster in almost all of the cases. The only exceptions are model wall 

section #1 built of either gray or blue bricks (see Figure 8.11). However, in the case of the 

former, the difference is only approximately 5%. In the case of red bricks, regardless of the 

difficulty of the wall section, mixed bricklaying gangs may be recommended (see Figure 

8.13). The same is true for model wall section #2 built of gray bricks (see Figure 8.12).   
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Figure 8.11 Mean productivity rate per brick type for each bricklaying gang composition for model 

wall section #1 

 
Figure 8.12 Mean productivity rate per brick type for each bricklaying gang composition for model 

wall section #2 
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Figure 8.13 Mean productivity rate per model wall section for each bricklaying gang composition for 

red bricks 

 
Figure 8.14 Mean productivity rate per model wall section for each bricklaying gang composition for 

gray bricks 

 

8.3 Application of the developed model  

As detailed in Chapters 4, 5, and 7 and shown in Figure 8.15, the developed model has two 

components: an ANN and a DES part. The artificial neural networks were trained using the 

collected data. As explained in Section 7.4, in the next step, the ANN model component 

was used to provide the productivity rates for model bricklayer-model wall section 

combinations. These output values were used to calculate the productivity rates of model 
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bricklaying gangs, which then – combined with the model wall section data – became the 

input for the DES model component as the task duration of the activity laying bricks. The 

output of this part of the model provided the process duration, in the case of all model 

bricklaying gangs and model wall sections. These could then be compared to each other 

and the conclusions as to the most optimal labour allocation options could be drawn. This 

was shown in this chapter. 

 

 
Figure 8.15 The DES-ANN hybrid model 

 

The same way, instead of using model bricklayers, bricklaying gangs, and wall sections, 

data of actual bricklayers and wall sections can be input into the ANN model component to 

obtain the productivity rates. Possible bricklaying gangs can be formed from the bricklayers, 

and their productivity rates calculated. These values can then be fed into the DES model 

component to get the process durations and to check the resource allocation options. With 

the help of the model, it can be determined which the most efficient bricklaying gangs are 

and which bricklaying gangs should be allocated to which wall sections in order to get the 

shortest process duration and shortest overall project duration. 

This model can be improved by training the ANN model component with more real-life data 

to make the output productivity rates more accurate and the model’s generalisation 

performance better. It is also possible to modify the model to fit another construction 

operation, such as block laying. For this, the process defined in the DES model component 

needs to be changed. In addition to that, the ANN model component needs to be trained 

with a dataset collected by observing the given operation. Furthermore, different factors can 

be added to or instead of the ones selected for this study.  
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8.4 Chapter summary 

The first part of this chapter summarised the results of the sensitivity analysis of the ANN 

model component and the statistical analyses. These were performed to examine the 

effects of the selected factors on the productivity rate. Based on these, experience, course 

difficulty, and brick type seemed to be the most important, significantly affecting the 

productivity rate. In the case of experience, the relationship is positive, meaning that as 

experience increases, the productivity rate increases, as well. In the case of the wall-related 

factors, the relationship is inverse, that is the productivity rate decreases as course difficulty 

and brick type (essentially brick difficulty) increases. The second part of the chapter 

presented the analysis of the output of the simulation runs. In the first batch of runs, the 

model bricklaying gangs were assigned to the tasks one at a time, and the process durations 

were analysed and compared. In the case of each model wall section, a different bricklaying 

gang was most productive. However, generally, model bricklaying gang #1 tended to be the 

slowest, while the performance of the other two model bricklaying gangs tended to be closer 

to each other, with bricklaying gang #2 doing slightly better. Regardless of the wall section 

and the bricklaying gang, construction time increased from red bricks to gray bricks to blue 

bricks. In the second batch of simulation runs, all model bricklaying gangs were assigned 

to the tasks at one time, and pairs of the same model bricklayers the next time. The process 

durations were analysed and compared. Gangs with mixed composition tended to work 

faster in almost all cases. The final section of the chapter discussed how the model can be 

used and further developed. Chapter 9 will summarise the conclusions that can be drawn 

from the analyses. 
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CHAPTER 9 

CONCLUSIONS 

9.1 Introduction 

The construction industry plays a significant part in the UK’s economy. When the 

construction-related businesses are also included, its contribution is approximately 12% of 

the GDP (Green, 2020). Therefore, construction productivity has always been an important 

topic, and hence subject of academic, industrial, and governmental research, as well. While 

the number of construction projects is growing, the supply of skilled labour is decreasing 

owing to the aging workforce and the low level of new entry (Brooks and McIlwaine, 2021). 

Therefore, it is important to better understand the productivity of labour-intensive works in 

order to be able to manage skilled labour appropriately and better plan future projects.  

 

9.2 Review of research aim and objectives 

Per Chapter 1, the aim of the research project was to provide a better understanding of the 

bricklaying process and how it can be modelled, descriptively and normatively, to find a 

modelling approach that allows for a better examination of the effects of various factors on 

bricklaying productivity. To achieve this aim, the following objectives were set: 

 

1. To explore how construction productivity can be modelled. This entailed 

examining various methods used on different levels of productivity and selecting 

the most suitable modelling approach that fit the aim of the study. 

2. To study bricklaying works, bricklayers’ characteristics, and gang composition. 

This included taking time measurements and observations so as to gather 

knowledge on the workflow of the operation, various materials, different wall 

types, bricklayers, and resource allocation. This was necessary for determining 

the building blocks of the model and assembling the data table fed into the 

model. 

3. To investigate the factors influencing construction labour productivity. This 

entailed the selection of the most relevant factors in the planning phase of 

construction projects, and brickwork, in particular.   

4. To create the model using the selected method including the chosen factors.  

5. To analyse how the selected factors affect productivity. This was achieved with 

the help of the model and statistical analyses.  

6. To test the model by running it with model project data. This included creating 

model wall sections, bricklayers, and bricklaying gangs. This enabled testing the 

resource allocation implications of bricklaying gang compositions. 
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9.2.1 Objective #1: To explore how construction productivity can be modelled 

Productivity can be measured and analysed at different levels. One possibility is to 

differentiate between activity, project, and industry levels (Ayele and Robinson Fayek, 

2018). This research project focused on the activity level, which determined the 

measurement of productivity and the choice of methods. To measure efficiency and 

productivity work sampling, five-minute rating, and time study can be performed. The latter 

was selected for collecting data as more information can be gathered through that than by 

the other two mentioned options. To study the effects of various factors on productivity, use 

can be made of statistical analysis, artificial intelligence, simulation, fuzzy logic, genetic 

algorithms, expert systems, or – at the industry level – multi-criteria decision analysis 

methods. All these methods were introduced, and examples were shown for their 

application in Chapter 2. Machine learning (a sub-field of artificial intelligence) and 

simulation were discussed in more detail in this chapter as these were chosen for modelling 

in this research.   

Artificial neural networks (ANN), a machine learning approach, were selected for one 

component of the model because they can learn from the input data, even if the dataset is 

imperfect, and make predictions – in this case, for productivity – for new input data (Flood 

and Kartam, 1994a; Di Franco and Santurro, 2020). ANNs are capable of handling the 

complexity and uncertainty inherent to construction problems (Chao and Skibniewski, 1994; 

Di Franco and Santurro, 2020).  

For the other component of the model, a simulation method was chosen because it helps 

model a system and experiment on the system (by changing its parameters), which allows 

for generating multiple scenarios and make generalisations to predict performance (White 

and Ingalls, 2017). Out of the three basic simulation methods – discrete-event simulation, 

system dynamics, and agent-based modelling – discrete-event simulation (DES) was used, 

which is suitable for modelling a construction process, providing the process duration and 

information on resource usage and allocation. 

Creating hybrid models is beneficial because by combining the methods, their advantages 

are also combined, while their shortcomings can be balanced out. Chapter 2 presented 

numerous examples for hybrid models, including two DES-ANN hybrids (Chao and 

Skibniewski, 1994; Song and AbouRizk, 2008).     

 

9.2.2 Objective #2: To study bricklaying works and bricklayers 

For modelling bricklaying works, it was necessary to collect information on bricklaying 

operations and bricklayers. This was achieved in multiple ways. The most prominent one 

was through structured observations. These took place on two construction sites in North 

East England from mid-November 2018 to mid-June 2019. On both sites, cavity walls were 

constructed. On one site this consisted of a block inner leaf and a perforated, Staffordshire 
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blue engineering brick outer leaf, while on the other steel framing system was used, and 

two buildings had a red brick façade of stock bricks with a single frogging, and for the other 

two buildings, gray, solid, concrete bricks were laid for the outer leaf. Three different 

masonry sub-contractors worked with the three different materials; therefore, altogether 21 

bricklayers were observed. 

Over the course of the site visits, net time measurements were taken of the laid courses 

with noting the bricklayer(s), the number of bricks laid, and the exact course (building, floor, 

number of the course) constructed, and the date. These pieces of information were used to 

put together the data table needed for modelling. Besides the measurements, the process 

of bricklaying was also observed because the steps had to be determined for the sequence 

defined in the simulation model. This was described in detail in Section 4.2. In addition, the 

site notes included remarks on the similarities and differences of working with different 

materials and the various bricklayers, and also of the gang compositions. 

Apart from structured observations, semi-structured interviews with experts were 

conducted. The questions were mostly open-ended and were divided into three categories: 

process, wall, and bricklayers. The responses were used to better understand these topics. 

For example, the ones in the process group helped finalise and verify the workflow in the 

DES model component. 

All the above were explained in more detail in Chapter 3, while the literature review in 

Chapter 2 also had a section (2.6) dedicated to bricklaying works giving an overview of the 

published bricklaying studies. 

 

9.2.3 Objective #3: To investigate the factors influencing productivity 

A great number of productivity influencing factors can be identified, and in studies where 

the aim is to present a collection, numerous factors are included. These can be compiled 

for various levels of productivity, countries, or based on the point of view of different 

construction project stakeholders. Section 2.2 gave an overview of studies resulting in a 

comprehensive list of factors. 

When modelling specific construction works, having too many factors might render the 

model useless; therefore, it is important to include a smaller set of factors, and only known 

variables, for which data collection is possible (Horner and Talhouni, 1995; Graham and 

Smith, 2004). In Section 2.6, which introduced the research bricklaying productivity, the 

factors included in the models were also listed. Table 2.4 summarised them in five 

categories: design, gang, management, site-related, and external factors.  

Since the aim of this research project was to aid pre-construction planning, the factors 

chosen needed to be ones that are known in advance. In this vein, design and gang-related 

factors were selected to be included in the model. Numerous studies identified skills and 

experience among the most important influencing factors. Therefore, these were chosen 
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from the gang-related group. Skills were further broken down into four factors as this further 

categorisation allowed exploring relevant categorical and hierarchical skills with more 

finesse: quality, perceived speed, knowledge, and independence. In some studies, design 

complexity was also among the significant ones. In this research project, complexity was 

expressed as course difficulty and brick type, with the latter expressing a difficulty ranking, 

as well. All seven factors (quality, perceived speed, knowledge, independence, course 

difficulty, brick type) were ordinal variables and could take up values of 1, 2, or 3. The 

selection of the factors was also informed by the observations and interviews and was 

explained in more detail together with their scale in Section 4.1. 

For the data table, the values of all seven factors were needed. The values of the wall-

related factors were assigned based on the observations, while the values of the worker-

related factors were the results of the evaluation of the bricklayers by their supervisors, 

which was explained in Section 3.5. 

 

9.2.4 Objective #4: To create the model  

The model developed is hybrid, it consists of two components: an artificial neural network 

and a discrete-event simulation part.  Figure 9.1 shows the structure of the model. 

 
Figure 9.1 The hybrid DES-ANN model structure 

 

The ANN component of the model was built based on the framework described in Section 

5.2. Hundreds of feedforward networks were defined to find the best performing ones. Due 

to having selected seven influencing factors according to objective #3, all the networks had 

seven input neurons, and one output neuron for the productivity rate. The number of hidden 

neurons ranged from 5 to 20, which were in either one or two hidden layers. Six training 

algorithms were chosen for the backpropagation: Levenberg-Marquardt, Bayesian 

Regularisation, gradient descent with adaptive learning rate backpropagation, gradient 

descent with momentum and adaptive learning rate backpropagation, Broyden-Fletcher-
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Goldfarb-Shanno quasi-Newton backpropagation, and scaled conjugate gradient 

algorithms. As for the activation functions, log-sigmoid and tangent sigmoid transfer 

functions were selected for the first or – in the case of two hidden layers – the first two 

layers, and linear function for the final layer. The correlation coefficient, the mean squared 

error, and the mean absolute percentage error were the chosen performance measures. 

These values were checked for all the created networks.  

The validation of the model component was achieved through 10-fold validation. The data 

table was divided into 10 folds, i.e., 10 equal sets, which meant that at any time, 9 folds 

were used for training, and 1 for testing the network. Then the averages of the performance 

measures of the best networks in each fold were calculated. After this first round, it was 

found that the mean absolute percentage error was higher than 20%, which was not ideal. 

Therefore, six datapoints were removed from the data table, and again hundreds of 

networks were created as described above. The best performing networks were shown in 

Table 5.5. The final three networks were listed in Table 5.6. 

The DES component of the model was created by using the framework presented in Section 

7.2. The two parts of the model make up a sequential structure, where the output of the first 

component becomes the input of the second one. This is called the interaction point, and 

the interacting variable is the productivity rate, which is calculated by the ANN part, and is 

used as the task duration of the laying bricks activity in the DES component. Six model 

bricklayers and six model wall sections were created, and the productivity rates were 

determined by the ANN component for all possible combinations. Subsequently, model 

bricklaying gangs were defined, the net task durations were calculated, and these values 

were fed into the DES component. This was explained in detail in Section 7.4. The process 

modelled with DES was determined based on objective #2. The task durations for the other 

activities in the workflow were calculated based on time measurements taken during the 

observations. Finally, model bricklaying gangs and labourers were assigned to the tasks, 

as well. Section 7.3 described the details.  

 

9.2.5 Objective #5: To analyse the effect of the factors on productivity 

The effect of the factors on the productivity rate were tested in two ways. One was to do the 

sensitivity analysis of the ANN model component. This meant that the value of the chosen 

factor was changed between 1 and 3 by 0.1 increments, while the values of the other factors 

were kept at their mean values. This was done in the case of the three best performing 

networks. Section 5.5 provided the details. 

Statistical analyses were also performed on the data table. As the normality and 

homogeneity tests showed that some groups of factors followed a normal distribution, while 

others were non-normal, and that in some cases the variances were homogeneous, while 

in others they were heterogeneous, both parametric (ANOVA, Welch’s, Brown-Forsythe’s) 
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and non-parametric tests (Kruskal-Wallis, Jonckheere-Terpstra) were used to determine 

which factors had significant effects on the productivity rate. In addition, simple and multiple 

regression analyses were conducted to examine the relationship between the factors and 

the productivity rate. The results of the statistical analysis were documented in Chapter 6, 

while Section 8.1 summarised and compared the outcome of the sensitivity analysis of the 

ANN model component and the statistical analysis.  

  

9.2.6 Objective #6: To test the model 

The output (net process durations) of two batches of simulation runs were recorded and 

analysed. In the first one, the model bricklaying gangs were assigned to the tasks one at a 

time, and the process durations were analysed and compared to each other to note the 

similarities and differences for the three brick types and model wall sections. The 

preparation for the tests were explained in Section 7.5.1, while the results of the runs were 

shown in Section 8.2.1. 

In the second batch of simulation runs, all model bricklaying gangs were assigned to the 

tasks at one time, and pairs of the same model bricklayers the next time. The process 

durations were analysed and compared to each other to note the similarities and differences 

for the three brick types and model wall sections. The preparation for the tests were 

explained in Section 7.5.2, while the results of the runs were shown in Section 8.2.2. 

 

9.3 Contributions to knowledge 

The hybrid DES-ANN model (see Figure 9.1) presented in this study was developed to 

better estimate the bricklaying process duration in the planning phase of a project, taking 

worker and wall-related factors into consideration. In addition, the model is capable of 

testing resource allocation options to find the optimal one. Only two other similar hybrid 

models were found in the literature. The main difference is that in Chao and Skibniewski’s 

(1994), the model worked the other way round, they applied DES to generate activity 

durations for the ANN model component. The basic idea of Song and AbouRizk’s model 

(2008) was similar in that the ANN model component helped in estimating the activity 

durations in the DES part; however, that was developed specifically for steel fabrication 

operations; therefore, the overall modelling framework was different. This DES-ANN model 

was created for labour-intensive construction operations, where the labour resource is 

especially important. While in this thesis its application is for bricklaying works and a certain 

set of factors that influence productivity was considered, by following the same steps 

different factors or different operations can be modelled. 

As part of this research project, with the help of the developed model and extensive 

statistical analyses, the effects of the chosen factors on productivity were examined. Worker 

characteristics (quality, perceived speed, knowledge, independence, experience) and wall-
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related factors (course difficulty, brick type) were selected as the values of these can be 

known in the planning phase of projects. Among the studies on bricklaying productivity, 

experience and/or skills were included in Karthik and Kameswara Rao’s (2019), Gerek et 

al.’s (2015), and Aswed’s (2016) research. In the case of the first, skills and experience 

were found to be the most important influencing factors, while in the case of the other two, 

design-related factors topped the lists. These two factors appeared in the top few factors in 

other productivity studies, as well (Alaghbari et al., 2019; Hamza et al., 2019). Experience 

was also found to be the most important out of the selected worker-related factors in this 

research. Productivity rate showed a steady increase as experience increased, meaning 

that more experienced bricklayers worked faster.  

Even if skills were included in some models, they were rarely defined. Only two models, 

Olomolaiye’s (1988) and Florez’s (2017), defined skills. However, their definitions were 

different from the four factors used in this study. By considering four factors, relevant 

categorical and hierarchical skills were explored and with more finesse than the previous 

two models.  

Independence was found to make a significant contribution to the multiple regression 

models, meaning that it significantly predicts the productivity rate. With the increase of 

independence, the productivity rate also increased according to both the multiple regression 

analysis and the sensitivity analysis of the ANN model. Based on Brown-Forsythe’s test and 

one multiple regression analysis, perceived speed was also found to be a significant factor. 

However, the trends showed by the results varied. This might be due to the difference 

between the supervisors’ subjective evaluation and the objective time measurements. 

Quality and knowledge were not significant in any of the tests. It is worth noting that 

productivity rate showed an increase with increasing quality. This is, perhaps, a surprising 

discovery, taking into account that high-quality work may require more time. One 

explanation for this result might be (suggested by the interviews and the supervisors’ 

evaluation) that more experienced bricklayers produce better quality work, and they also 

tend to work faster. However, the data were not enough to make definite conclusions. Both 

wall-related factors (course difficulty, brick type) were found to be significant in all statistical 

analyses performed. From the results and the sensitivity analysis of the ANN model 

component, as these factors increase, the productivity rate decreases. The values of both 

factors were defined to reflect increasing difficulty, and the results confirmed this. (More 

detailed results can be found in Chapters 5 and 6.) 

The effects of the choice of bricklaying gang and bricklaying gang composition on 

productivity were also examined with the help of the DES model component. In the case of 

the former, the simulation was run for all model bricklaying gang-model wall section-brick 

type combination. Non-parametric statistical tests showed all these factors to be significant. 

The model wall section and brick type factors used in the analyses, reflected increasing 

difficulty, and the results confirmed the decreasing productivity. In the case of each model 
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wall section, a different bricklaying gang was most productive. As a practical application, 

this result has the potential to benefit personnel on site when assigning gangs to wall 

sections. A gang might be more suitable for a specific wall than another gang. In addition, 

the gang consisting of the least and most experienced bricklayers tended to be the slowest; 

therefore, as an application of this finding, to enhance productivity, having more balanced 

gangs might be beneficial, that is pairing bricklayers with more similar attributes. In the 

second batch of simulation runs, all bricklaying gang composition-brick type-model wall 

section combinations were tested. In this case, both parametric and non-parametric 

statistical analysis showed all factors to be significant. Here the question was whether – on 

the project as a whole – having mixed bricklaying gangs or gangs comprised of bricklayers 

with the same skills and experience led to shorter process duration. In all cases, except for 

the blue bricks, mixed bricklaying gangs produced better results. Therefore, the allocation 

of mixed bricklaying gangs might be beneficial overall to enhance productivity. Note that 

walls of blue bricks require special considerations. (More detailed results can be found in 

Chapter 8.)   

The frameworks developed for the two model components are also contributions of this 

research project. These can be used individually or in combination. The steps for developing 

an ANN model can be found in Section 5.2. This includes all the necessary considerations 

from the network architecture to the training algorithms. The simulation framework 

described in Section 7.2 helps selecting the most suitable simulation method or hybrid 

simulation approach with the most appropriate structure and interaction point(s).   

Finally, if further research validates the findings of this work, as a practical application, the 

results of this study have the potential to benefit bricklaying construction companies in 

improving task productivity with strategies that can be controlled by the supervisors on site. 

For instance, the difficulty of the wall section needs to be taken into consideration when 

assigning a gang for its construction and having mixed bricklaying gangs can be beneficial.  

 

9.4 Limitations of research 

The findings of this research project should be considered in light of its limitations.  

One set of limitations are in connection with the data collection and the number of 

datapoints. First, selecting projects to observe was challenging. Due to time and financial 

constraints, these projects needed to be in North East England. The projects also needed 

to have considerable masonry packages that were realised in the period allocated for data 

collection. In addition, the contractor companies had to be willing to authorise observations 

taking place on the construction site. Furthermore, scheduling the visits was also difficult, 

made even more complicated due to occasional material shortages and equipment 

breakdown on site. With more resources, including more observers, time, and the possibility 

to travel further, more visits could have been made and more projects could have been 
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observed. However, owing to the issues mentioned above, probability sampling of projects 

and bricklayers would not have likely occurred even in this case. As artificial neural networks 

can learn more from more data, having a larger data table would have helped the model’s 

accuracy and generalisation performance. A third project with a similar structure (cavity 

wall) and materials would have been beneficial for further testing and validating the DES 

component. More materials, structures, and bricklayers could have been observed allowing 

for the introduction of more factors, or further exploring the current ones. 

This leads to the next set of limitations: the selected factors. When choosing the number of 

factors that influence productivity, it was important not to choose too many as that could 

have made the model needlessly complex and inconvenient to use. However, it should be 

noted that differences in productivity can be caused by omitting factors. In addition, the 

values of the worker-related factors – with the exception of experience, where the 

categories were defined based on the years spent working in construction – were 

determined by the bricklayers’ supervisors. This was unavoidable considering the choice of 

factors, which also means that the results are very much dependent on the supervisors’ 

subjective opinions. Perhaps, measuring these worker-related factors requires more than 

the opinion of the supervisors, even though the evaluation of the bricklayers was based on 

the supervisors’ probably careful and long-time observations of the bricklayers. The fact 

that the worker-related factors used in this study were greatly subjective (purposefully 

selected), yet seem to be useful, should prompt studies where more objective ways of 

measuring quality, knowledge, and independence of workers are investigated.  

Another issue in connection with the number of observations is that since the activity laying 

bricks is the most important in the workflow, few time measurements were made for the 

other activities. In the case of a blue brick wall section, the jointing task takes almost as 

much time as the laying of the courses. Therefore, more observations could have been 

made of the jointing task. In addition, the task duration should have been differentiated by 

bricklayers.   

 

9.5 Directions for future work  

Following on from the limitations of the research, the study can be continued in multiple 

ways. First, further observations can be conducted. Observations of the same structure and 

materials can be used to train the ANN model component with more input data, thus making 

predictions more accurate, and the model’s generalisation performance better. In addition, 

the DES component would also benefit from running it with real-life project data.  

During the site visits to the first projects, the construction of blockwork was also observed. 

These observations, together with further time measurements, could be used to draw 

conclusions about bricklayers working with blocks and compare these to brickwork. 
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Additional observations and interviews with experts could reveal more factors to be included 

in the model. Especially worker-related ones would be beneficial as those are often 

overlooked by studies. This would require defining metrics and gathering subjective data 

with appropriate tests. 

The model might also benefit from the application of fuzzy logic (FL), which was listed as 

one of the approaches used in productivity studies in Chapter 2. FL is capable of modelling 

uncertainty and is helpful when the variables are expressed in linguistic terms, rather than 

crisp values. Therefore, FL could be part of the ANN model component, thus making it a 

neurofuzzy model, where FL is used to input the supervisors’ evaluation of the bricklayers 

into the model. Furthermore, future research, with a large enough dataset, could use more 

powerful and more data-intensive machine learning algorithms, such as enhanced 

probabilistic neural networks, finite element machine for fast learning, and dynamic 

ensemble learning algorithm. 

In the DES model component, triangular and beta distribution functions were applied for the 

task durations. However, other distribution functions could also be considered. 

Finally, the same way this model was created, using the frameworks, models of other 

construction operations could also be modelled. Due to the skill shortage, examining labour-

intensive works would be the most beneficial.    

 

9.6 Chapter summary 

This chapter began with reviewing the research aims and objectives set at the start of the 

research project. It was briefly described how each of the objectives, and – with the help of 

these objectives – ultimately, the research aim was achieved. The next section presented 

the research project’s contribution to knowledge with implications to both theory and 

practice. The limitations of the research were also discussed. The last section showed how 

this research can be continued in the future. 
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APPENDIX A 

PUBLISHED PAPERS (IN CHRONOLOGICAL ORDER) 

 

Paper #1 (conference paper) 

 

A Framework for Modelling Masonry Construction Using Hybrid Simulation 

Approaches 

Orsolya Bokor, Laura Florez, Allan Osborne, Barry J. Gledson 

 

Labour is a crucial resource for construction projects. More risks are associated with this 

than with other resources, such as materials and equipment. Contractors need tools to 

make more precise estimations concerning labour productivity that will allow them to 

minimise these risks and manage labour resources in the most efficient way possible. To 

achieve this, use can be made of construction simulation techniques, however, depending 

on the complexity of the problem, applying a single simulation approach might not be 

enough to appropriately model construction. Hybrid simulation approaches seem to be 

suitable because they combine the advantages of their components to reflect the dynamic 

nature of construction processes better and consider the number of uncertainties. Hybrid 

approaches can combine traditional discrete-event simulation (DES), agent-based 

modelling (ABM) or system dynamics (SD) with each other or with, for example, fuzzy logic 

(FL) to better capture the factors influencing productivity. To address these issues, a 

framework for modelling a masonry construction process that uses hybrid simulation is 

presented. Because masonry works are one of the most labour-intensive construction 

processes, and skilled labour resources are scarce, the use of such a framework would help 

contractors to make more realistic schedules based on accurate labour productivity 

estimation; thus, enabling them to utilise their resources more efficiently.   

 

Keywords: agent-based modelling, discrete-event simulation, fuzzy logic, hybrid simulation, 

masonry, productivity, scheduling, system dynamics.  

 

Citation: Bokor, O., Florez, L., Osborne, A. and Gledson, B. J. (2018) ‘A Framework for 

Modelling Masonry Construction Using Hybrid Simulation Approaches’, in Skibniewski, M. 

J. and Hajdu, M. (eds) Proceedings of the Creative Construction Conference 2018. 

Ljubljana, Slovenia: Diamond Congress Ltd., pp. 732–738. doi: 
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 Paper #2 (journal paper) 

 

Overview of Construction Simulation Approaches to Model Construction 

Processes 

Orsolya Bokor, Laura Florez, Allan Osborne, Barry J. Gledson 

 

Construction simulation is a versatile technique with numerous applications. The basic 

simulation methods are discrete-event simulation (DES), agent-based modeling (ABM), and 

system dynamics (SD). Depending on the complexity of the problem, using a basic 

simulation method might not be enough to model construction works appropriately; hybrid 

approaches are needed. These are combinations of basic methods, or pairings with other 

techniques, such as fuzzy logic (FL) and neural networks (NNs). This paper presents a 

framework for applying simulation for problems within the field of construction. It describes 

DES, SD, and ABM, in addition to presenting how hybrid approaches are most useful in 

being able to reflect the dynamic nature of construction processes and capture complicated 

behavior, uncertainties, and dependencies. The examples show the application of the 

framework for masonry works and how it could be used for obtaining better productivity 

estimates. Several structures of hybrid simulation are presented alongside their inputs, 

outputs, and interaction points, which provide a practical reference for researchers on how 

to implement simulation to model construction systems of labor-intensive activities and lays 

the groundwork for applications in other construction-related activities. 

 

Keywords: agent-based modelling, discrete-event simulation, fuzzy logic, hybrid simulation, 

masonry, scheduling, system dynamics. 

 

Citation: Bokor, O., Florez, L., Osborne, A. and Gledson, B. J. (2019) ‘Overview of 

construction simulation approaches to model construction processes’, Organization, 

Technology and Management in Construction, 11, pp. 1853–1861. doi: 

https://doi.org/10.2478/otmcj-2018-0018 
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Paper #3 (conference paper) 

 

Input for Hybrid Simulation Modelling Construction Operations 

Orsolya Bokor, Laura Florez, Barry Gledson, Allan Osborne 

 

Good pre-construction planning efforts are a vital part of the effective management and 

delivery of construction projects. In order to prepare more accurate schedules and cost 

calculations, realistic productivity rates to improve precision are needed. The use of 

simulation for modelling the elements of construction processes can assist with this 

aspiration. The application of hybrid simulation approaches is particularly appropriate as 

they can capture complicated behaviour, uncertainties, and dependencies. This paper 

discusses the use of one such approach combining discrete-event simulation (DES) and 

system dynamics (SD) to determine more accurate productivity rates. The DES component 

models the operations with the workflow of the tasks performed. Its input consists of the 

task elements with their durations and resource information. The factors that influence the 

productivity rates are taken into account with the help of the SD component. Input for this 

part of the model includes the factors as well as considerations of their interrelationships 

and effects. In this work, a case study of such input data for masonry works – for brick- and 

blockwork – is presented. It shows the input data and its integration in the DES-SD approach 

for modellers to determine more realistic productivity rates. 

 

Keywords: discrete-event simulation; labour; masonry; modelling; productivity; simulation; 

system dynamics. 
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simulation modelling construction operations’, in Skibniewski, M. J. and Hajdu, M. (eds) 

Proceedings of the Creative Construction Conference 2019. Budapest, Hungary: Diamond 

Congress Ltd., pp. 571–577. doi: https://doi.org/10.3311/CCC2019-078 
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Paper #4 (conference paper) 

 

Using Artificial Neural Networks to Model Bricklaying Productivity 

Orsolya Bokor, Laura Florez-Perez, Giovanni Pesce, Nima Gerami Seresht 

 

The pre-planning phase prior to construction is crucial for ensuring an effective and efficient 

project delivery. Realistic productivity rates forecasted during pre-planning are essential for 

accurate schedules, cost calculation, and resource allocation. To obtain such productivity 

rates, the relationships between various factors and productivity need to be understood. 

Artificial neural networks (ANNs) are suitable for modelling these complex interactions 

typical of construction activities, and can be used to assist project managers to produce 

suitable solutions for estimating productivity. This paper presents the steps of determining 

the network configurations of an ANN model for bricklaying productivity. 

 

Keywords: artificial neural networks; bricklaying; construction; labour productivity; 

scheduling. 
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Artificial Neural Networks to Model Bricklaying Productivity’, in Proceedings of 2021 
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APPENDIX B. INTERVIEW QUESTIONS 

PROCESS 

 Describe the process of building a brick/block wall (tasks, required resources). Is it 

different for different purposes (external, internal, façade)? 

 Is the process different in different regions of UK? Of Europe? Elsewhere? Is there a 

standard? British? European? (Or just for design (EC)? Maybe for quality check for 

finished walls?) 

 Has the process changed over time? 

 What are the tools called? (esp. the ones used for raking, pointing, profiles for the 

line, and supports) 

WALLS 

 What makes a wall difficult to construct? Categories: 

1 no opening, only half-cuts 

2 few openings, more cuts, movement joint 

3 many openings, many cuts (measured individually), movement joints 

4 curved walls, not perpendicular corners 

Characteristics: cuts, openings, corners, movement joints, bond, pattern, pointing type,  

 How is it different for different materials? 

 Does the size of the units matter? E.g., is it different to place ½ or 1 brick? (duration-

wise) 

 Does the size of the wall matter? (long or short, high or standard height, ground floor 

or higher up) 

 Do students learn different bonds, curved walls, decorations? 

BRICKLAYERS (do they use the term mason?) 

 What are the most important skills of a bricklayer? 

 What are the most important characteristics of a bricklayer? Probes: characteristics: 

quality, speed, knowledge, independence, training, experience?  

 Do these affect productivity? Which ones? How? 

 What is the standard capacity of bricklayers? 

 How are students assessed? Is it the same at other colleges? Probes: Does time 

matter? Or just quality? 

 What is the usual composition of squads? 

 How many bricklayers usually work on a given section? How do they divide work? 

 What is the difference between level 1, 2, and 3 of bricklaying courses? Can they 

work on site after first? 

 Will robots be used instead of people? 
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