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Abstract. We propose a support-vector-machine (SVM) tree to hierar-
chically learn from domain knowledge represented by low-level features
toward automatic classification of sports videos. The proposed SVM tree
adopts a binary tree structure to exploit the nature of SVM’s binary clas-
sification, where each internal node is a single SVM learning unit, and
each external node represents the classified output type. Such a SVM
tree presents a number of advantages, which include: 1. low comput-
ing cost; 2. integrated learning and classification while preserving indi-
vidual SVM’s learning strength; and 3. flexibility in both structure and
learning modules, where different numbers of nodes and features can
be added to address specific learning requirements, and various learn-
ing models can be added as individual nodes, such as neural networks,
AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Ex-
periments support that the proposed SVM tree achieves good perfor-
mances in sports video classifications. C©2010 Society of Photo-Optical Instrumen-
tation Engineers. [DOI: 10.1117/1.3518080]

Subject terms: machine learning; sports video classifications; support vector ma-
chine.
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1 Introduction
Sports videos represent an important information source for
many entertainment facilities, including TV broadcasting
and Internet-based video program consumptions. Automated
sports video classification provides important technical tools
for a range of applications, such as video indexing, brows-
ing, annotation, and retrieval as well as improvement on
their efficiency and effectiveness in accessing sports video
archives. At present, extensive research has been carried out
and reported on video content analysis and various event
detections.1–12 Reference 1 reported a sports video classifi-
cation technique via exploitation of the human vision system
in perceiving some salient regions inside video frames, which
are represented by regions of interests (ROI). The technique
first extracts ROIs and then clusters these ROIs to extract
color and texture features to classify sports videos. Apart
from a complicated algorithm design, the technique does
not produce effective classification results observed from the
experimental results reported. In Ref. 2, Ma and Zhang re-
ported a motion-based video shot classification technique,
which achieved effective results in classifying some motion
modes such as jump, run, and other general camera motions.
The reported technique can classify video shots in terms of
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low-level features, but is not able to tell whether such motion
modes belong to specific type of sports. In Ref. 3, Geetha and
Palanivel described a block-based intensity comparison code
for video classification based on a hidden Markov model
(HMM). While the technique has the advantage of being
robust to illumination changes, the classification is limited
to a small number of video patterns. In Ref. 4, supervised
learning is reported to build up a semantics dictionary via a
K-means clustering technique to classify sports videos, and
such a technique could be very complicated, as the size of se-
mantics dictionaries is constantly increasing. A major focus
of the existing research is to extract semantics around human
objects from sports videos and attempt to add annotations to
human object-related videos via classifications.5, 6, 8–12 As a
result, human object segmentation plays crucial roles in all
of these techniques, yet such segmentation itself is a difficult
research problem, and existing work is primarily relying on
low-level features and detections of their consistency within
regions to complete segmentation.13 Consequently, the accu-
racy of human object segmentation is limited.

In this work, we propose a SVM tree to illustrate hi-
erarchical and integrated learning through domain-specific
knowledge for sports video classification, providing a use-
ful framework for intelligent multimedia content processing,
where each individual node has the facility of machine learn-
ing relatively independent from other nodes, yet by working
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together, can present integrated capture of the overall con-
tent features for sports videos. The essential advantage of
the proposed approach lies in the fact that the SVM tree has
flexibility in terms of both structuring learning nodes and
extracting content features, presenting significant potential
for tailored needs in multimedia content interpretation and
analysis.

The rest of the work is structured into three sections, where
Sec. 2 describes the proposed SVM tree design, Sec. 3 reports
the experimental results, and Sec. 4 draws conclusions.

2 Proposed Support-Vector-Machine Tree Design
In any video content analysis algorithm development, ex-
ploitation of domain knowledge specific to video types re-
mains to an important approach. As an example, surveillance
video captured from monitoring a kitchen provides impor-
tant domain-specific knowledge for the video content anal-
ysis, such as “using the washing machine,” “food cooking,”
“washing-up,” etc. In the case of sports video classification,
individual types of sports present many useful features and
provide a range of domain-specific knowledge for exploita-
tion in their content analysis and classifications. Observation
of sports videos reveals that spatial distribution of color, tex-
ture, and illumination within frames follow certain levels of
common rules and common features, which can be high-
lighted as follows. 1. Dominant color is normally present
in the region of audience and the region of sports grounds,
and the sports grounds tend to be located in the center of
the frames, yet the region of audience tends to be located
toward the boundary of frames. 2. The proportion of sports
grounds with respect to the region of athletes is different de-
pending on the specific type of sports video, such as football,
basketball, etc. 3. The strength of motion presents signifi-
cant differentiating features among different types of videos.
4. Illumination in the region of audience tends to be weaker
in comparison with the illumination in the region of sporting
grounds.

To exploit all the domain knowledge as observed and high-
lighted previously, we propose to divide video frames into
blocks and extract features to characterize both the block
content and relationships among neighboring blocks to ac-
tivate machine learning modules for capturing the domain
knowledge, and hence achieve learning-based sports video
classifications. As the video content presents both spatial and
temporal information, and activities described by the video
sequences tend to be complicated, where same scenes could
be repeated in random occasions, single modules of ma-
chine learning, such as neural networks, SVM, etc., would
not be able to provide sufficient learning and classification
at a global level. To this end, we propose a SVM tree, where
an individual SVM module is taken as an internal node in-
side the tree, and hence its learning is focused on one set of
features to characterize or exploit one aspect of the domain
knowledge. An overview of our proposed algorithm is illus-
trated in Fig. 1, and the proposed SVM tree is illustrated in
Fig. 2.

From Fig. 1, it can be seen that essentially we propose
to use a set of features to represent the domain knowledge,
and another set of training videos to optimize the SVM tree
structure and enable the tree to learn from the domain knowl-
edge and complete the sports video classification. Such a
principle can also be applicable to other types of videos,
where domain-specific knowledge is presented, such as news,

Fig. 1 Illustration of the proposed algorithm.

documentation, etc., which are seen from any broadcasted
TV program.

Figure 2 essentially illustrates an example of our initial
design to prove the concept and the idea introduced, which
can be changed in many different ways, such as adding more
learning nodes to accommodate more video types or chang-
ing the tree structures, etc. The principle here is to pro-
vide hierarchical and integrated learning from the domain
knowledge captured by descriptive features, and exploit its
localized optimization inside individual SVM nodes, toward
optimized learning at a global level via a relatively small set
of training videos.

SVM is basically designed for binary classifications.14–16

Although a number of multiclassification methods have been
reported in the published literature, the introduced mecha-
nism of converting binary classification into multiclassifica-
tion remains limited in terms of full exploitation of SVM
power in learning for binary classes. In addition, the com-
plexity of the existing multiple SVM classifiers is normally
O(n), yet the proposed SVM tree is O(log2n), where n stands
for the number of classification types. Generally, the pro-
posed SVM tree could be arranged as a standard binary tree
or a general tree with multiple siblings, which is dependent
on the number of sports video types and their descriptive
features. As the tree with multiple siblings requires multiple
SVM classifiers to be the nodes, which inevitably increases
the complexity of the algorithm design, we adopt the binary
tree structure to preserve the advantages of binary classi-
fications. The essential purpose is to exploit the flexibility
of a tree structure to integrate individual SVM nodes into
a global learning structure, and accommodate the varying
nature of the sports video content analysis, processing, and
classifications.

As seen from Fig. 2, our initial SVM tree includes five in-
ternal nodes representing individual SVM learning units, and
six external leaf nodes representing classified sports video
types, including football, basketball, volleyball, table-tennis,
tennis, and badminton. In principle, the number of inter-
nal nodes is determined by considering the number of in-
put sports video types to be classified. In other words, the

Fig. 2 Illustration of SVM tree.
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Fig. 3 Illustration of top-down design principle.

number of correspondingly generated leaf nodes should be
greater than or equal to the total number of input sports video
types, and any number of internal nodes that satisfies the prior
condition would be acceptable. In our case, however, this pro-
cess is manually designed, since the number of sports video
types is normally known in advance. Automation of this pro-
cess can be possible by introducing an automatic inactivation
scheme in the training process, where internal nodes can be
inactivated and converted into leaf nodes whenever their in-
put training videos only contain one type. As the SVM tree
can be extended for classification of more sports types, we
used the six types in this work to illustrate the major concept
of the reported work.

At the root node represented as SVM-1, the learning
procedure should capture the common domain knowledge
and classify all the sports video types into two sets: ψ1
= { football, basketball, volleyball}, and ψ2 = {table-tennis,
tennis, badminton}. At the next level, we have two SVM
learning nodes SVM-2 and SVM-3. Depending on what do-
main knowledge is to be captured by descriptive features
and learned by individual SVM nodes, we design SVM-2 as
such that the set ψ1 is classified into one specific type ψ1,1
= football and one subset ψ1,2 = {basketball, volleyball}.
Similarly, SVM-3 is designed to learn a specific domain
knowledge, which classifies the set ψ2 into one specific
sport video type ψ2,1 = table-tennis and one subset ψ2,2
= {tennis, badminton}. Following that, two more internal
learning nodes, SVM-4 and SVM-5, are designed to com-
plete the classification of the two subsets ψ1,2 and ψ2,2.

Given the input sport video set ψ , the proposed SVM tree
design follows a top-down principle that video types with
similar content or common domain knowledge are grouped
together to form two subsets, and each subset is then further
grouped into two more subsets according to the common do-
main knowledge within each individual subset. Such group-
ing carries on until each specific video type is obtained and
hence represented by external or leaf nodes in the SVM tree.
The top-down principle is illustrated in Fig. 3.

Following the SVM tree design, the remaining issue is
to extract features to represent, describe, and characterize
the domain knowledge of each video subset as illustrated in
Fig. 3, and drive the SVM node inside the tree for automated
learning and classification. As a matter of fact, all machine-
learning-based video classification reported in the literature
so far share the same principle that features used to character-
ize the video content are manually selected, although the tree
structure is designed by the training process, where a num-
ber of possible tree structures are tested and their outcome is
used to optimize the tree structure.

Given the fact that numerous features have been reported
and researched in the published literature, it becomes difficult
to evaluate all these features and select suitable ones for our

purposes. Instead of carrying out exhaustive searches and
wasting time on the work, we propose a knowledge-based
principle to select features for describing domain knowledge
observed inside sports videos. The advantage of doing so is
to explore the feasibility of the proposed design within man-
ageable categories of features, yet leave sufficient space for
future upgrading, and hence making the proposed algorithm
flexible and portable enough for further research and investi-
gations. From extensive observations of sports videos, it be-
comes clear that features of illumination distribution, color
distribution, texture, and motion are good starting points for
illustrating and implementing the principle of the proposed
SVM tree.

To characterize the feature that illumination distribution
inside sports videos follows some unique rules where illu-
mination on moving objects tends to be brighter than their
surroundings, and human vision systems often rely on the
perception of such illumination differences to follow those
moving objects, we propose to extract a so-called block in-
tensity comparison code (BICC)3 inside videos for the pur-
pose of illumination feature extraction. As BICC measures
the illumination differences between blocks, it provides good
potential for describing and discriminating the illumination
distribution among different types of sports videos as well as
different video scenes.

Given video frames with the size of M×N, we divide them
into k1×k2 blocks, each of which has the size of h×v, where
h = M/k1 and v = N/k2. As a result, the value of k1×k2
is the total number of blocks inside each frame, which are
determined by the block size. Following the spirit of MPEG,
the block size can be selected as 8×8, 16×16, 32×32, and
64×64. While smaller block size enables the capture of re-
gional details, larger block size provides global characteri-
zation of correlation between featured regions. In our work,
we selected the block size to be 64×64.

The BICC can be generated as a sequence of bits rep-
resented by η[ j] via direct comparison between the mean
intensity value of each block and that of every other block
inside the video frame, which totals C2

k1×k2
comparisons.

Correspondingly, BICC contains C2
k1×k2

bits, and the specific
value of each bit is determined as follows:

η[ j] =
{

1 if X (m) > X (n), m �= n
0 otherwise

, (1)

where 1 ≤ m ≤ k1×k2, 2 ≤ n ≤ k1×k2 − 1, 1 ≤ j ≤ C2
k1×k2

;
and X (m), X (n) are the mean intensity of the compared
blocks.

Existing research on color features is extensive for the
past few decades, especially in the areas of content-based
image retrieval, most of which are based on the principle of
recording the statistics of color components via histograms.
While some sports video frames may have little difference in
terms of illumination distributions, especially those captured
in daylight, their color distribution could provide additional
cues for differentiation. To reflect the principle of histograms
and variation of all the color features reported in the literature,
we propose to calculate both the block-based color histogram
Hm and the color moments Em, σ m, and Sm as the color
features for our proposed SVM tree-based classification.

Let xi,c,m be the intensity values of R, G, B components
for the i’th pixel inside the m’th block, where i ∈ [1, h×v],
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c ∈ [R, G, B], and m ∈ [1, k1×k2], then the block-based
color histogram can be calculated as:

Hm,c = [δ1,c, δ2,c, . . . δ j,c . . . δξ,c], (2)

where ξ = 32 stands for the number of quantized intensity
categories C j ( j ∈ [1, ξ ]), and δ j counts the number of times
that xi,c,m ∈ C j .

In addition, the second and third order moments from the
color components are also calculated to enhance the color
description, which are defined as follows:

σm,c =
[

1

h×v

h×v∑
i=i

(xi,c,m − μm,c)2

] 1
2

, (3)

where μm,c = 1/h×v
h×v∑
i=1

xi,c,m is the mean value of all pixels

inside the m’th block, and h×v = 64×64 defines the block
size.

Sm,c =
[

1

h×v

h×v∑
i=i

(xi,c,m − μm,c)3

] 1
3

. (4)

For texture description and representation, research is
also extensive and widely reported in the literature. For the
convenience of minimizing the algorithm complexity, we
use moment-based texture description via a co-occurrence
matrix12 extracted from input video frames, details of which
are provided as follows.

Let βc (i, j)d,θ count the number of times that gray-level
i occurs with gray-level j at a relative position, where the
Euclidean distance between pixels i and j is d at an angle
θ , where i ∈ [0, 255], j ∈ [0, 255], and c ∈ [R, G, B]. One
co-occurrence matrix can be produced to characterize the tex-
ture feature if we normalize the count βc (i, j)d,θ , where the
values of d and θ are selected empirically through the train-
ing process to reflect the texture orientation inside the videos
to be classified. Since there are three components inside the
color image, the final co-occurrence matrix we produce to
describe the texture feature is the weighted summation of all
three co-occurrence matrices as shown next:

[A] =
[

P (i, j) =
3∑

c=1

wcβ
c
i, j

]
,

∑
wc = 1, (5)

where P (i, j) represents the element of the final co-
occurrence matrix, and wc represents a set of weighting
coefficients determined by the transformation between the
two color spaces (R, G, B) and (Y, U, V).

As a result, a number of texture features can be extracted
from the co-occurrence matrix. First, the second order mo-
ment can be extracted to reflect the energy embedded inside
the co-occurrence matrix, which measures the distribution
of gray levels inside the video frame and the strength of its
corresponding texture. The definition is given as:

W1 =
255∑
i=0

255∑
j=0

p2(i, j). (6)

Second, contrast is useful in measuring the appearance of
the texture, which can be defined as:

W2 =
255∑
i=0

255∑
j=0

[(i − j)2 p(i, j)]. (7)

To reflect the information embedded inside the tex-
ture, we use the concept of entropy to introduce a quanti-
fied measurement of the texture distribution, which can be
calculated via:

W3 = −
∑
p(i, j)

P (i, j)× log P (i, j) . (8)

Finally, we could also measure the variances of the tex-
ture via the co-occurrence matrix to reflect the level of texture
variations among local regions, which often include the nor-
mal and inverse variances. Their definitions are given as:

W4 =
∑
p(i, j)

[P (i, j) − μ]2 P (i, j) , (9)

W5 =
255∑
i=0

255∑
j=0

P (i, j)

1 + (i − j)2 , (10)

where μ stands for the mean value.
As discussed earlier, moving objects often dominate the

scenes of visual content inside sports videos, providing essen-
tial domain knowledge for content analysis and understand-
ing. Although the moving objects are physically occurring
in a 3-D world, their projection onto the 2-D space inside
all videos still provides important differentiating power for
sports video classification, and thus the perspective effects
incurred through the projection from 3-D to 2-D are normally
small and trivial when measured in terms of the classifica-
tion results. In practice, such moving objects are primarily
represented by moving human objects such as athletes, and
relevant targets including football, basketball, etc. To extract
features about the moving objects, existing efforts tend to
have object segmentation first, followed by a series of other
processing modules, such as tracking and detection, etc.,
which are too complicated for our purpose of learning and
classification. As machine learning has already complicated
procedures in capturing the properties of the learning tar-
gets, any complicated feature extraction process introduced
could overload the machine learning modules and make it
difficult for practical applications. To this end, we propose
a simple motion feature extraction technique via exploiting
MPEG motion estimation and compensation techniques for
the SVM tree. As the macroblock-based motion vectors re-
flect the principle of object segmentation, such simple motion
features can still reflect or describe the movement nature of
the objects among different video scenes and video frames.
While direct human observation of such motion features may
not provide obvious cues for those moving objects, the ma-
chine learning procedure is capable of capturing such moving
objects by exploiting the discriminating features among dif-
ferent video scenes and sports types.

Given the motion vector ρx,y = (αx , αy) located at the
position of (x, y) inside the video frame, its strength and
direction can be described by:

γx,y =
√

(αx )2 + (αy)2, (11)

tan(θx,y) = αy

αx
. (12)

Optical Engineering December 2010/Vol. 49(12)127003-4

Downloaded from SPIE Digital Library on 23 Mar 2011 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



Xiao et al.: Support-vector-machine tree-based domain knowledge learning toward automated sports. . .

Table 1 Assignment of domain knowledge features to SVM nodes.

SVM-1 Motion

SVM-2 Color

SVM-3 Color

SVM-4 Texture (d = 100, θ = 0 deg) and BICC

SVM-5 Texture (d = 100, θ = 90 deg) and BICC

To characterize the strength of global motion inside
frames, we quantize θx,y into eight directions: ωs

= [
0, 45, . . . 315 deg

]
, s ∈ [0 . . . 7]; and ρx,y into eight re-

gions: τs = [τ0, τ1, . . . τ7]. As a result, two motion his-
tograms can be constructed as detailed as:

Hγ = 1

k×k
[δs(γx,y ∈ τs)], (13)

Hθ = 1

k×k
[δs(θx,y ∈ ωs)], (14)

where δs(γx,y ∈ τs) counts the number of times that γs ∈ τs ,
and s ∈ [0, 7].

By calculating the mean value and variance of the mo-
tion vectors, we can obtain two additional statistics features
for the motion information inside the video frames. After all
the features are extracted, they are assigned to the individual
SVM nodes for classification by following the top-down de-
sign principle, as shown in Fig. 3. Details of the assignment
are given in Table 1.

3 Experimental Results
To evaluate the proposed SVM tree, we implemented the
algorithm in a Microsoft VC + + 6.0 environment under the
Windows XP system, and established a video database from
archives of TV sports broadcastings. A description of such
sports video databases is highlighted in Table 2, where a total
of 1592 shots, lasting around 5 to 30 s each, are extracted
from all the videos,17 and the frame size is 352×240.

To measure the performances of the proposed SVM tree,
we adopt the widely known precision and recall rates for
presenting our experimental results.

To compare with the existing techniques, we choose the
work reported in Ref. 1 as our benchmark. As a result, the
experimental results achieved by the proposed algorithm are

Table 2 Description of sports video shot database.

Video class Source Total Train

Football Champions League2009, 358 100

English Premier League,

Italian Football League,

Spain Soccer League;

2002 World Cup

Badminton 2008 England Open Badminton; 154 82

2008 Asian Badminton

Championships

Tennis 2008, 2009 Australian Open; 242 100

2008 Wimbledon

Basketball 2009 NBA 292 100

Volleyball 2004 Athens Olympics; 169 75

2008 Beijing Olympics

Table-tennis 2004 Athens Olympics; 214 100

2008, 2009 World Table Tennis

Championships

listed in Table 3 and the results achieved by the benchmark
are listed in Table 4. From both tables, it can be seen that
the proposed algorithm outperforms the existing benchmark,
which supports the idea and the principle introduced and de-
scribed in the work, that when extracted descriptive features
are used to drive the SVM tree rather than a single machine
learning unit, the integrated learning nodes can provide good
performances in sports video classification.

4 Conclusions
We describe a SVM tree approach to construct a hierarchical
and integrated learning structure to classify sports videos and
achieve good performance, as supported by the experimental
results. In comparison with existing learning approaches as
reported in the literature, the proposed SVM tree has the

Table 3 Experimental results for the proposed SVM tree.

Input videos Badminton Basketball Football Table-tennis Tennis Volleyball Precision Recall

Badminton(72) 68 3 1 0.9444 0.9444

Basketball(192) 184 5 3 0.9583 0.9388

Football(258) 5 250 3 0.9690 0.9690

Table-tennis(114) 2 109 3 0.9561 0.8790

Tennis(142) 2 12 128 0.9014 0.9552

Volleyball(94) 2 5 3 84 0.8936 0.9545
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Table 4 Experimental results for the benchmark.

Input videos Badminton Basketball Football Table-tennis Tennis Volleyball Precision Recall

Badminton(72) 58 1 1 8 4 0.8055 0.8406

Basketball(192) 177 7 2 6 0.9218 0.8806

Football(258) 8 244 2 4 0.9457 0.9242

Table-tennis(114) 2 2 97 13 0.8509 0.8220

Tennis(142) 8 1 1 11 121 0.8521 0.8643

Volleyball(94) 1 12 11 70 0.7447 0.8750

following advantages: 1. low-level complexity in design and
computing, i.e., O(log2n) versus O(n); 2. integrated learning
yet exploits individual strength; 3. flexibility in structure,
where different numbers of nodes and features can be added
to address the level of learning, the number of video types
to be classified, and the number of features to be extracted;
and 4. flexibility in choosing learning modules, where other
learning models can be added or replaced such as neural
networks, AdaBoost, HMM, and DBN.
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