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Abstract

In this article, the Neumann problem on the semi-line for the Burgers equation is
considered. The problem is reduced to a nonlinear integral equation in one
independent variable, whose unique solution is proven to exist for small time. An
explicit solution is discussed as well.
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1 Introduction
Initial/boundary value (IBV) problems for integrable nonlinear PDEs frequently appear

in physical applications and have originated several important studies in the past few

decades. Much interest has been devoted to IBV problems for nonlinear PDEs which

are treatable by the inverse scattering transform method, such as the nonlinear Shrö-

dinger equation (NLS), the Korteweg-de Vries equation (KdV), and the Sine-Gordon

equation [1-8]. Other studies have been devoted to IBV problems for nonlinear PDEs

which are C-integrable, namely, which are exactly linearizable via a change of variables:

well-known examples in this class are the Burgers equation and the Eckhaus equation

[9-15].

It is the aim of this article to analyze the Neumann problem for the Burgers equa-

tion:

ut = uxx + 2uxu, u ≡ u(x, t), (1)

on the semi-infinite domain x ∈ [0, ∞) characterized by the following set of initial

and boundary data:

u(x, 0) = u0(x), x ≥ 0, (2a)

ux(0, t) = F(t), t ≥ 0, (2b)

with

F(0) = u0x
(0), (2c)

where F(t) is a continuous, bounded function of its argument:

F(t) ≤ B, B ∈ R, (2d)
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and the initial datum u0(x) is assumed to be integrable on the semi-line:∫ ∞

0
|u0(x)|dx < ∞. (2e)

We point out that such problem was previously considered in [12], where it was

shown to be equivalent to a nonlinear integro-differential equation (in one indepen-

dent variable), which however cannot generally be solved. In this article, our analysis is

based on the method developed in [10] for the solution of Dirichlet problem and on

the use of the contraction-mapping technique, analogously to what was done for the

Eckhaus equation in [15]. In particular, the main result of the present study is to prove

the following.

Theorem 1 There exists a finite constant s ∈ ℝ, 0 <s < ∞, such that the solution to

the Neumann problem (2a-2e) for (1) exists and is unique for 0 ≤ t <s.
Unlike the Neumann problem on the finite interval (0,1), for which the existence of a

solution in L2 (0,1) was proven in [16] by means of the Galerkin method, the

Neumann problem on the semi-line for the Burgers equation has not received much

attention in the literature in the past. To the best of the authors’ knowledge, Theorem

1 (as well as Lemma 1 in Section 3) are new.

In Section 2, we put problem (1, 2a-2e) in a one-to-one correspondence with a

Neumann problem for the heat equation, characterized by a boundary datum which is

a nonlinear combination of the boundary data {u(x,0) ,ux(0,t)} of the Burgers equation.

We reduce such a problem to a nonlinear integral equation of Volterra type in one

independent variable (t). In Section 3, we prove the existence and uniqueness of

the solution for small time. In Section 4, we discuss a special solution of the problem

(1, 2a-2e).

2 Reduction to a nonlinear integral equation
We begin our analysis by introducing the following ("generalized” Hopf-Cole) linearizing

transformation [11,12]:

υ(x, t) = C(t)u(x, t) exp
[∫ x

0
dx̃ u(x̃, t)

]
, (3a)

u(x, t) =
υ(x, t)

C(t) +
∫ x

0 dx̃ υ(x̃, t)
, (3b)

with

C(0) = 1. (3c)

The above transformation maps the Burgers equation (1) into the linear heat equa-

tion

υt(x, t) = υxx(x, t), (4)

with the “compatibility” condition for C(t) given by

Ċ(t) = C(t)
[
ux(0, t) + u2(0, t)

]
, (5)

where (hereafter) the dot indicates differentiation with respect to time. Through

transformation (3a-3c), from the Neumann IBV data for the u(x,t), (2a-2e), we obtain
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the IBV data for the υ(x,t) that characterize (4):

υ(x, 0) = u0(x) exp
[∫ x

0
dx̃ u0(x̃)

]
, (6a)

υ(0, t) = C(t) u(0, t), (6b)

υx(0, t) = C(t)
[
ux(0, t) + u2(0, t)

]
= Ċ(t). (6c)

Comparing (6c) with (5) and making use of (6b) with (2b), we can restate the com-

patibility condition for C(t), (5), in the following shape:

Ċ(t) = C(t) F(t) +
υ2(0, t)

C(t)
. (7)

According to (6c), the boundary datum υx(0,t) for the heat equation (4) is a non-

linear combination of known (ux(0,t)) and unknown (u(0,t)) boundary data for the Bur-

gers equation (1).

The Neumann problem on the semi-line for υ(x,t) is then in principle solved through

the following prescription:

1. Solve the Neumann problem on the semi-line for υ(x, t), with initial datum (6a)

and (6c);

2. Determine the unknown function C(t) by means of the transformation (3a) and

(3c);

3. Recover u(x,t) via the inverse transformation (3b).

We reduced the problem of solving Burgers equation (1) with the Neumann condi-

tion (2a-2e) to the determination of the couple {υ(x,t), C(t)}, where υ(x,t) solves the

heat equation (4) with the Neumann condition (6a-6c) and C(t) simultaneously satisfy-

ing (7).

In order to explicitly evaluate the solution υ(x,t) of (4), as in [12], it is convenient to

introduce the cosine-Fourier transform:

υ(x, t) =
2
π

∫ ∞

0
dk υ̂(k, t) cos(k, x), (8a)

υ̂(k, t) =
∫ ∞

0
dx υ(x, t) cos(k, x)

= υ̂(k, 0)e−k2t −
∫ t

0
dt̃ υx(0, t̃)e−k2(t̃−t)

= υ̂(k, 0)e−k2t −
∫ t

0
dt̃ Ċ(t̃) e−k2(t̃−t),

(8b)

υ̂(k, 0) =
∫ ∞

0
dx υ(x, 0) cos(k x)

=
∫ ∞

0
dx u0(x) cos (k, x) e

∫ x
0 dx̃ u0(x̃).

(8c)
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Using (8b) and (8c) with (8a), via (7), we equivalently get

υ(x, t) =
2
π

∫ ∞

0
dk υ̂(k, 0) cos(k x)e−k2t

− 2
π

∫ ∞

0
dk
∫ t

0
dt̃
[
C(t̃)F(t̃) +

υ2(0, t̃)

C(t̃)

]
cos(k x) ek2(t̃−t).

(9)

In the right-hand side of (9), υ(0,t) is unknown. It is then convenient to set z(t) =

υ(0,t) and to calculate left- and right-hand sides of (9) at x = 0. To do so, let us start

by recalling that

(a) for an arbitrary function of t, g(t), we have∫ ∞

0
dk
∫ t

0
dt̃ g(t̃) ek2(t̃−t) =

√
π

2

∫ t

0
dt̃

g(t̃)√
t − t̃

;

b) from the convolution properties of the cosine-Fourier transform (8), we have

2
π

∫ ∞

0
dk υ̂(k, 0) e−k2t =

1√
π t

∫ ∞

0
dx υ(x, 0) e− x2

4t .

From this, at x = 0, we can restate (9) as follows:

z(t) =
1√
π t

∫ ∞

0
dx υ(x, 0) e− x2

4t − 1√
π

∫ t

0
dt̃

Ċ(t̃)√
t − t̃

(10a)

or, via (7),

z(t) =
1√
π t

∫ ∞

0
dx υ(x, 0) e− x2

4t − 1√
π

∫ t

0
dt̃

1√
t − t̃

(
C(t̃)F(t̃) +

z2(t̃)

C(t̃)

)
. (10b)

Ċ(t) = C(t) F(t) +
z2(t)
C(t)

, C(0) = 1. (10c)

Making use of (10a), we can put in a more explicit form the previously given pre-

scription to solve the Neumann problem on the semi-line, (1) and (2a-2e), for u(x, t):

1. Given the Neumann data on the semi-line, (2a-2e), compute C(t) by substituting

(10b) into (10c), namely, from the following nonlinear integro-differential equation:

C(t) Ċ(t) = F(t) C2(t)

+

(
1√
π t

∫ ∞

0
dx u0(x) e− x2

4t

+
∫ x

0 dx̃ u0(x̃)

− 1√
π

∫ t

0
dt̃

Ċ(t̃)√
t − t̃

)2
(11)

with C(0) = 1 as in (3c);

2. Evaluate the solution to the heat equation (4) with IBV data (6a-6c), υ(x,t), by

means of (8a) making use of (8b) and (8c);

3. Recover u(x,t) from υ(x,t) via (3b).

For arbitrary u0(x) and F(t), there is no general technique for solving a nonlinear

integro-differential equation like (11). On the other hand, the determination of the

solution u(x,t) has been reduced to the solution of the nonlinear integral equation

(10b)–with C(t) satisfying (10c)–for only one independent variable (t). In the next sec-

tion, we prove the existence and uniqueness of the function z(t) for 0 ≤ t <s, with 0
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<s < ∞ (Lemma 1). Once the existence and uniqueness of z(t) are established, the exis-

tence and uniqueness of υ(x,t) for 0 ≤ t <s then follow, via (9), with C(t) being

obtained via (10c). Then, via the inverse transformation (3b), Theorem 1 immediately

follows, namely the solution of the original Neumann problem (2a-2e) for the Burgers

equation (1) exists and is unique (for 0 ≤ t <s).

3 Contraction mapping
In order to analyze the existence properties of z(t) for 0 ≤ t <s < ∞, we denote by SM
(s) the closed sphere ||z|| ≤ M in the Banach space of continuous functions z(t) for t

∈ [0,s), with the uniform norm ||z|| = l.u.b.|z(t)|. On the sphere SM(s), we introduce

the transformation:

w(t) = T z(t), (12)

where T z(t) coincides with the right-hand side of (10b). To prove the existence and

the uniqueness of the solution of the integral equation (10b) for a finite interval of

time, we will prove the following:

Lemma 1 The mapping operator T is a contraction mapping in SM(s) for t ∈ [0,s).
In order to prove this Lemma, we need to prove that, for t ∈ [0, s), T is closed and

contractive in SM(s).

3.1 Closure of T in SM(s) for t ∈ [0,s)
We need to prove that if z(t) ∈ SM(s) then w(t) ∈ SM(s) as well, namely that ||z(t)|| ≤

M for t ∈ [0,s) entails
∥∥w(t)

∥∥ =
∥∥T z(t)

∥∥ ≤ M for t ∈ [0,s).
The first step is to obtain an upper and lower bounds for |C(t)|. Integrating (10c), we

obtain

C2(t) = e2
∫ t

0 dt′ F(t′)
[

1 + 2
∫ t

0
dt′ z2(t)e−2

∫ t′
0 dt′′ F(t′′)

]
. (13)

From the fact that |ex| = ex ≤ e|x| for any x ∈ ℝ, applying the triangular inequality (|x|

- |y| ≤ |x + y| < |x| + |y|) on (13) we get

|C(t)| ≤
∣∣∣e∫ t

0 dt′ F(t′)
∣∣∣ [1 + 2

∣∣∣∣
∫ t

0
dt′ z2(t) e−2

∫ t′
0 dt′′ F(t′′)

∣∣∣∣
]1/2

≤ eσB[1 + 2M2σ e2σB]1/2
,

(14a)

|C(t)| ≥
∣∣∣e∫ t

0 dt′ F(t′)
∣∣∣ [1 − 2

∣∣∣∣
∫ t

0
dt′ z2(t) e−2

∫ t′
0 dt′′ F(t′′)

∣∣∣∣
]1/2

≤ eσB[1 + 2M2σ e2σB]1/2
;

(14b)

imposing the last right-hand side of (14b) to be strictly greater than zero, we have

the following condition on s:

0 ≤ σ <
W( B

M2 )

2 B
, (14c)

where W is the Lambert-W function, implicitly defined as the inverse function of f

(W) = W ew
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The second step, is to obtain an upper bound for T z(t). Applying the triangular

inequality on (10b), via (16), we get

∥∥T z(t)
∥∥ ≤

∣∣∣∣ 1√
π t

∣∣∣∣
∫ ∞

0
dx υ(x, 0) e− x2

4t

+
1√
π

∣∣∣∣∣
∫ t

0
dt̃

C(t̃) F(t̃)√
t − t̃

∣∣∣∣∣
+

1√
π

∣∣∣∣∣
∫ t

0
dt̃

z2(t̃)

C(t̃)
√

t − t̃

∣∣∣∣∣

(15)

From (6a) and (2e) we can write

υ(0, x) ≤ ∥∥u0(x)
∥∥ exp

(∥∥u0(x)
∥∥ ≡ A

)
; (16)

then, for the first term on the right-hand side of (15), we get

∣∣∣∣ 1√
π t

∫ ∞

0
dx υ(x, 0) e− x2

4t

∣∣∣∣ ≤ A

∣∣∣∣ 1√
π t

∫ ∞

0
dx e− x2

4t

∣∣∣∣ = A. (17a)

For the second and the third terms in the right-hand side of (15), inequalities (14a-

14c) and (2d) entail

1√
π

∣∣∣∣∣
∫ t

0
dt̃

C(t̃)F(t̃)√
t − t̃

∣∣∣∣∣ ≤ 2B
√

σ eσB

√
π

√
1 + 2M2σ e2σB, (17b)

1√
π

∣∣∣∣∣
∫ t

0
dt̃

z2(t̃)

C(t̃)
√

t − t̃

∣∣∣∣∣ ≤ 2M2√σ√
π eσB

√
1 − 2M2σ e2σB

. (17c)

Defining M = aA, with a > 1, and combining (15) with (17a-17c), we get

∥∥w(t)
∥∥ ≤ M

[
1
α

+ β(σ )
]

, (18a)

where

β(σ ) =
2
√

σ√
π

⎛
⎜⎜⎝B eσB

√
1

M2
+ 2σ e2σB +

1

eσB

√
1

M2
− 2σ e2σB

⎞
⎟⎟⎠ , (18b)

with s satisfying condition (14c). On the other hand, in the interval σ ∈
[

0,
w(B/M2)

2B

]
,

for B > 0 and M > 0, b(s) is a monotonic, increasing bijective function on the positive

Reals, and so there exists a value σ∗ <
w(B/M2)

2B
such that

1
α

+ β(σ ) ≤ 1 ∀ σ ∈ [0, σ∗]. (18c)

Taking s ≤ s*, from (18a), we have ||w(t)|| ≤ M. Thus the mapping T is closed. □
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3.2 Contractivity of T in SM(s) for t ∈ [0,s)
We need to prove that, given two solutions of (12), z(t) and ẑ(t), with ||z(t)-ẑ(t)|| = δ <

2M; it then follows that
∥∥T z(t) − T ẑ(t)

∥∥ ≤ θ δ with 0 <θ < 1.

We now write

∥∥w − ŵ
∥∥ =

1√
π

∣∣∣∣∣∣
∫ t

0
dt̃

F(t̃)
[
C(t̃) − Ĉ(t̃)

]
√

t − t̃

∣∣∣∣∣∣ +
∫ t

0
dt̃

1√
t − t̃

[
z2(t̃)

C(t̃)
− ẑ2(t̃)

Ĉ(t̃)

]

=
1√
π

∣∣∣∣∣
∫ t

0
dt̃

Ċ(t̃) − ˙̂C(t̃)√
t − t̃

∣∣∣∣∣ .
(19)

Let us recall

X(t) =

∣∣∣∣ z(t)
C(t)

∣∣∣∣ and X̂(t) =

∣∣∣∣∣ ẑ(t)

Ĉ(t)

∣∣∣∣∣ . (20)

Notice that, if σ ≤ σ∗ <

[
0,

w(B/M2)
2B

]
, then, for 0 ≤ t ≤ s, via (14a) and (14b), we

have that C(t) is a nonzero bounded function of t:

eσB[1 − 2M2σ e2σB]1/2 ≤ |C(t)| ≤ eσB[1 + 2M2σ e2σB]1/2

thus X(t) and X̂(t) are bounded functions of t as well.

The identity[
z2(t)
C(t)

− ẑ2(t)

Ĉ(t)

]
= [z(t) − ẑ(t)]

[
z(t)
C(t)

+
ẑ(t)

Ĉ(t)

]
− z(t)

C(t)
∗ ẑ(t)

Ĉ(t)

[
C(t) − Ĉ(t)

]
, (21)

entails∣∣∣Ċ(t) − ˙̂C(t)
∣∣∣ ≤ [B + X(t)X̂(t)

] ∣∣∣C(t) − Ĉ(t)
∣∣∣ + |z(t) − ẑ(t)|

[
X(t) + X̂(t)

]
= [B + R̃1(t)]

∣∣∣C(t) − Ĉ(t)
∣∣∣ + R̃2(t)|z(t) − ẑ(t)|,

(22)

where

R̃1(t) = X(t)X̂(t) and R̃2(t) = X(t)X̂(t). (23a)

Let us recall

R1 = max
0≤t≤σ∗

{
R̃1(t)

}
and R2 = max

0≤t≤σ∗

{
R̃2(t)

}
, (23b)

existence and well-definedness of which are implied by our previous considerations

about the boundedness of C(t).

Since, for an arbitrary function of t, g(t), we have that

∣∣∣∣dg(t)
dt

∣∣∣∣ ≥
∣∣∣∣∣d
∣∣g(t)

∣∣
dt

∣∣∣∣∣, from (22),

we can write∣∣∣∣∣∣
d
∣∣∣C(t) − Ĉ(t)

∣∣∣
dt

∣∣∣∣∣∣ ≤ (B + R1)
∣∣∣C(t) − Ĉ(t)

∣∣∣ + δR2, (24)
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or, integrating once with initial condition |C(0)-Ĉ(0)| = 0,∣∣∣C(t) − Ĉ(t)
∣∣∣ ≤ [e(B+R1)σ − 1

] δR2

B + R1
, (25a)

∣∣∣∣∣∣
d
∣∣∣C(t) − Ĉ(t)

∣∣∣
dt

∣∣∣∣∣∣ ≤ δR2 e(B+R1)σ . (25b)

Formula (25b), via (19), implies

∥∥w(t) − ŵ(t)
∥∥ ≤ θδ with θ =

2
√

σR2√
π

e(B+R1)σ . (26)

Choosing

σ < min

⎧⎨
⎩σ∗,

W
(

π(2+R1)
2 R2

2

)
2(2 + R1)

⎫⎬
⎭ , (27)

we get θ < 1 and, for what we saw in the previous Subsection 3.1, the mapping T
remains closed. Thus, Lemma 1 is proved, namely, T is a contraction operator on SM
(s). □
Lemma 1 means that there exists a unique fixed point z(t) = T z(t) of T in SM(s),

for 0 ≤ t ≤ s. We have thereby proven the existence and uniqueness of the solution of

the integral equation (10b) for 0 ≤ t <s. Then, as explained at the end of Section 2,

from the existence and uniqueness of z(t) in the interval 0 ≤ t <s, we get, via (9) and

(10c), the existence and uniqueness of υ(x,t) in the same interval, and via the inverse

transformation (3b), we immediately get Theorem 1.

4 A special solution
In this section, we consider a particular solution of the Neumann problem (2a-2e) for

the Burgers equation (1), and derive the corresponding expression for z(t).

A solution to the Burgers equation is given by

u(x, t) =
(1 − eA)e

− x2

4(t+t0)

√
π(t + t0)

{
2 − (1 − eA)

[
1 − erf

(
x

2(t + t0)

)]} , (28)

where A and t0 > 0 are two real constants and

erf(x) =
2√
π

∫ x

0
dξe−ξ2

.

From (28), we obtain for the squared modulus

∣∣u(x, t)
∣∣2 =

H2[y(x, t)]
t + t0

, (29a)

Where

H(y) =
{√

π ey2
[

coth
(

A
2

)
− erf(y)

]}−1

, (29b)
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and

y(x, t) =
x

2
√

t + t0
. (29c)

Thus the solution (28) on the whole line is a single hump with (negative) peak value

given by

u(xp, t) =
yp√
t + t0

, (30a)

where yp is the solution of the equation

yp = H(yp); (30b)

the peak value is attained at

xp = 2yp
√

t + t0 (30c)

and moves to the left with velocity

dxp

dt
=

yp√
t
. (30d)

The corresponding initial datum and boundary condition, which associate the given

solution (28) to the Burgers equation (1) are

u(x, 0) = u0(x) =
(1 − eA)e

−
x2
4t0

√
π t0

{
2 − (1 − eA)

[
1 − erf

(
x

2 t0

)]} , (31a)

ux(0, t) = F(t) = − tanh2( A
2 )

π(t + t0)
. (31b)

Notice that, if t0 = 0, then, from (31a), it turns out that u0(x) = Aδ(x), where δ(x) is

the Dirac delta function; in this case, all the following calculations can still be

performed.

Next, we prove that (28) considered on the semi-line x ∈ [0, +∞) is a particular solu-

tion of the Neumann problem (2a-2e) for the Burgers equation (1). To this end, we

start noting that from the solution (28), we get

u(0, t) = − tanh( A
2 )√

π(t + t0)
, (32)

so that

ux(0, t) + u2(0, t) = 0; (33)

this last relation, via (5) and (3c), implies

C(t) = 1, (34)

which in turn, from (6b) and (32), implies

z(t) = υ(0, t) = u(0, t) = − tanh( A
2 )√

π(t + t0)
. (35)
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On the other hand, it is now immediate to see that the integral equation (10b), when

(34) and (35) are used, reduces to

z(t) =
1√
π t

∫ ∞

0
dx υ(x, 0)e− x2

4t , (36a)

υ(x, 0) = − tanh( A
2 )√

π t0
e
− x2

4t0 . (36b)

An explicit computation of the integral (36a) with (36b) yields immediately the same

expression (35) for z(t).
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