
Northumbria Research Link

Citation: Harrington, Peter and Ng, Wai Pang (2012) Investigation of the speed-up of a
dual microcontroller parallel processing system in the execution of a mathematical
operation. In: PGNet 2012: The 13th Annual Postgraduate Symposium on The
Convergence of Telecommunications, Networking and Broadcasting, 25-26 June 2012,
Liverpool, UK.

URL: http://www.cms.livjm.ac.uk/pgnet2012/ <http://www.cms.livjm.ac.uk/pgnet2012/>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/8234/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

 Investigation of the speed-up of a dual

microcontroller parallel processing system in the

execution of a mathematical operation

Peter Harrington

School of Computing, Engineering and Information

Sciences, Northumbria University

Newcastle upon Tyne, U.K.

peter.harrington@northumbria.ac.uk

Wai Pang Ng

School of Computing, Engineering and Information

Sciences, Northumbria University

Newcastle upon Tyne, U.K.

wai-pang.ng@northumbria.ac.uk

Abstract— An investigation of the performance of a two

microcontroller parallel processing system is presented. A two-

microcontroller parallel processing is developed using low end

microcontrollers (PIC 16F877). An 8x8 bit multiply operation

and a 16x16 bit multiply operation are executed on a single

microcontroller and on the proposed dual microcontroller

parallel processing system in order to assess the performance of

the proposed system. Results presented show poor performance

for the 8x8 bit multiply with an average speed up factor of 0.82

This is due to the time required to transfer data around the dual

microcontroller system being significant in comparison to the

time required to complete the multiply operation, thus nullifying

the potential advantage that might be expected of a dual

microcontroller system. The 16x16 multiplier exhibited good

performance, with results showing a maximum average speed up

factor of 1.7 and an average speed up factor of 1.5. The 16x16

multiplication requires longer time to compute and the data

transfer time between microcontrollers whilst still having an

impact on the overall computation time is significantly less than

for the 8x8 multiplier A formula has been developed to provide

an estimate of the possible speed up within a system in relation to

the process execution time and the time required to communicate

data around the proposed system. The proposed system was

developed and tested using the Proteus simulation software.

I. INTRODUCTION

Speed-up or improved performance, in terms of program
execution time, of a computer system can no longer be
achieved with a single processor [1]. Adopting systems where
sections of code can be executed by several or more processors
in parallel is the only way that performance can be significantly
improved. Since the development of the 8-bit microprocessors
of the late 1970s, manufacturers have made improvements in
performance by incorporating elements of parallelism into their
processors. Expansion of data bus width improved program
fetch cycle time from memory improving execution times by
up to a factor of four. Advances in manufacturing techniques
allowing a greater number of more complex circuitry and
interconnections to be placed on the silicon itself led to the
development of the Harvard architecture [2] from the original
Von Neumann architecture [3]. The Harvard approach involved
separate address and data busses to program and data memory

which allows the program memory bus width to accommodate
the width of a single processor instruction thus allowing the
instruction to be extracted from memory in one fetch cycle.
Harvard architecture enables a further enhancement to
performance known as pipelining, which allows fetching of the
next instruction and execution of the current instruction to
occur simultaneously. Thus an instruction can be executed
every instruction cycle as is the case with the low end
Microchip Technology microcontrollers [4].

For future enhancements the only way to significantly
improve performance is to move away from internal
microprocessor architecture development, and move towards
the development of parallel microprocessor structures
incorporating multiple microprocessors [1]. Sakamoto and
Hase [5] show that parallel execution of arithmetic and
accumulator operations can increase processing speeds by up to
35%. Maslennikov et al [6] implement a processor array
structure with a common bus architecture to RAM producing a
six times execution speed improvement compared to the single
processor configuration. Schubert and Becker [7] produce a
multi-microcontroller system which speeds up SAT algorithms
and Bin [8] develops a dual microcontroller based GPRS data
transmission control system design which processes events
more quickly than a single microcontroller solution.

Within a computer program there will be serial elements
and there will be parallel elements. Amdahl [9] offers a
prediction for the speedup factor of an algorithm depending
upon the serial and parallel content and the number of
processors in the system. This speedup factor S(n) is defined as
[9]

)(

)1(
)(

nt

t
nS

p

p
 (1)

where tp(1) is the process time on a single processor and tp(n) is
the process time using n parallel processors. It is the speedup
factor that it the whole purpose behind the development of
parallel processing systems. Under ideal circumstances and for
a fully parallelizable algorithm

nnS )((2)

Unfortunately this is never the case. A parallel processor
system will consist of a network of processors and memory, all
of which must communicate with each other.

This investigation involves the development of a parallel
processing system incorporating two microcontrollers to
ascertain whether speed up is possible within this type of
architecture, and to attempt to quantify the ratio in terms of the
time required to complete a process and the time required to
communicate data around the system in order to allow speed
up.

II. METHODOLOGY

One of the most intensive mathematical operations in a
microcontroller is multiplication. The PIC16F877
microcontroller was chosen as the microcontroller of choice for
the proposed parallel processing system due to the fact it does
not have a multiply instruction. The PIC16F877
microcontroller is an 8-bit, -40 pin device with 33 pins of
input/output (I/O) capability and 32 available instructions. The
proposed system configuration will potentially enhance the
device’s ability to compute mathematical operations. The
device’s large I/O capability also makes this device an ideal
choice for this investigation. The hardware configuration of the
dual microcontroller parallel processing system is shown in
Figure 1. In Figure 1 microcontroller 1 is assigned as the
Master and microcontroller 2 is assigned as the Slave. Eight bit
data is transferred from the Master to the Slave via the eight bit
Data Transmit (Tx), Data Receive (Rx) bus connection. The
control of this data transfer is via a two wire handshake. The
operation of this protocol is as follows. The Master places the
eight data bits to be transferred onto its Tx output bus and
asserts its Data Ready Signal. The Slave polls its Rx input
waiting for a high signal which indicates to the Slave that data
from the Master is available and ready to be read. When the
Slave reads a high level on its Rx handshake control line it
reads the data from the eight bit Rx bus and asserts its Data
Receive Acknowledge (Data Rx Ack) control line. The Master
is polling its Data Transfer Acknowledge (Data Tx Ack)
control signal at this time waiting for a high which indicates
that the Slave has read the eight bit data on the data transfer bus.
The Master then sets its Data Ready handshake line low
(inactive). The Slave reads this transition on its Rx handshake
line and sets its Data Rx Ack line low. The Master reads the
transition on this control line on its Data Tx Ack and the data
handshake protocol is complete. This is a comprehensive two
wire data handshake which will require some processing time
to complete, however it does ensure safe transfer of data of
data from Master to Slave. There will also be occasion for the
Slave to transfer data to the Master. This is achieved by
reversing the function and direction of the handshake control
lines and the direction of the eight bit data transfer bus. The
RAM memory in Figure 1 is required to store the data
necessary to assess the performance of the parallel processing
system. The active low input to the RAM, /CE, is driven by the
Master and is used to enable the RAM memory. The /WE input
to the RAM, again driven by the Master microcontroller, is
used to write data values, the number of clock cycles executed,
into the RAM memory.

Data Ready Data Receive

Data Rx AckData Tx Ack

Data Transmit Data Receive

Master Slave

Address Bus

Data Bus

/CE

/CE

/WE

/WE

RAM

Figure 1: Block diagram of the proposed system

In order to test the performance of the parallel processing
system an 8x8 bit multiply operation and a 16x16 bit multiply
are performed. The multiply instruction was considered to be a
good function to use as it has good potential parallel processing
capability whereby the intensive multiplication calculation can
be effectively shared between the two microcontrollers. The
fact that 16F877 does not have a multiply instruction within its
instruction set, also gave the multiply as the test calculation,
greater credibility.

The eight bit multiply executed on the parallel processing is
performed as follows.

The eight bit multiplicand and eight bit multiplier values,
which for testing processes are generated in the Master
microcontroller, are transferred to the Slave. The calculation of
the multiply operation is effectively shared between Master and
Slave. The Master calculates the lower partial product by
determining the result of the 8 bit multiplicand multiplied by
the lower nibble of the multiplier. The Slave calculates the
upper partial product by determining the result of the
multiplicand multiplied by the upper nibble of the multiplier. In
both cases the multiply operation is performed by a process of
shift and add. The two eight bit values, the partial product
result calculated by the Slave, are then transferred to the Master
via the two wire handshake transfer protocol. The Master then
sums the two eight bit values calculated by the master with the
two eight bit values calculated by the slave to determine the
overall multiply result as shown in Table 1. Notice that the
Slave partial product must be shifted four places to the left
before completing the final addition (X, Y and Z represent
single hexadecimal characters).

Table 1 Calculation of Master and Slave partial products

 8x8_multiply

Master partial product calculation X X

Slave partial. product calculation + Y Y

Overall Multiply Result Z Z Z Z

The 16x16 bit multiply is completed largely in the same
way as the 8x8 multiply. The 16 bit multiplicand and 16 bit
multiplier are transferred to the Slave via the two wire
handshake protocol as two four byte data transfers. The Master
calculates the partial product of the multiply operation by
multiplying the multiplicand by the lower byte of the multiplier,
and the Slave calculates the partial product of the multiply by
multiplying the multiplicand by the upper byte of the multiplier.

In the case of the 16x16 bit multiply the shifted multiplicand is
held in three, eight bit registers, and the partial product is
calculated after eight iterations of the multiplying process. The
result of the Slave partial product calculation is stored in three,
eight bit registers and is transferred to the Master after the
calculation is completed. The Master then adds the two
calculated partial products to produce the overall result.

An 8x8 multiply and 16x16 bit multiply were also
performed on a single microcontroller in order to be able to
quantify the performance of the parallel processing system.
The number of ones and zeros in the multiplier and
multiplicand will be the governing factor in the number of
clock cycles required to complete the multiply calculations.
The test patterns generated have been developed in order to
increase, reduce and move around the number of ones and
zeros within the multiplier and multiplicand in order to give a
good representation of possible calculation values without the
necessity to complete all of the possible calculation
permutations. The 256 results from the generated test patterns
will give a good representation of the performance of both the
8x8 multiplier and the 16x16 multiplier.

For the 8x8 bit multiplier, sixteen multiplicand values are
multiplied by sixteen multiplier values. The multiplier is
initially set at 00 and multiplied by the multiplicand starting
from 00, and then through the values 03, 0C, 0F, 30, 33, 3C, 3F,
C0 … to FF. The multiplier is then set 03 and multiplied
through the same multiplicand values as previous. The next
multiplier value is 0C, again multiplied by the same
multiplicand values, until eventually the last multiplication
FFxFF is completed when a total of 256 calculations will have
been completed. The sixteen test pattern values have been
chosen so that two adjacent ‘1’s effectively increment through
the multiplicand and also ultimately through the multiplier. All
possible combinations of values with two adjacent ‘1’s are thus
included as well as all combinations with four adjacent ‘1’s.

For the 16x16 bit multiplier, similar calculations are
performed with the values being 0000, 000F, 00F0, 00FF, 0F00,
0F0F, 0FF0, 0FFF, F000 … to FFFF. Thus the last multiply
calculation completed will be FFFFxFFFF when 256
multiplications will have been completed. In this case, four
adjacent ‘1’s effectively increment through multiplicand and
multiplier in a similar fashion to the test patterns applied to the
8x8 multiplier.

The time duration of the 8x8 multiplier calculations are
measured by TMR0, an eight bit counter within the Master
microcontroller and the time duration of the 16x16 calculations
are measured by TMR1, a 16 bit timer within the Master
microcontroller.

III. RESULTS AND ANALYSIS

The results shown in Figure 2 for the single multiplier
follow an approximate sawtooth pattern. The number of ‘1’s in
the multiplier effectively increases the execution time of the
multiplication. The more the number of ‘1’s the more clock
cycles required. This is due to the implemented algorithm
whereby if the multiplier bit under interrogation is a 1 then the
shifted multiplicand is added to the running total accumulator
and then shifted multiplicand is shifted left one bit. If the
multiplier bit under interrogation is a zero the shifted
multiplicand is shifted left one bit without addition. The add
operation incurred by the presence of ‘1’s in the multiplier is
the cause of the increase in the number of cycles. It can be seen
however that the increase in clock cycles is not linear. This non
linearity is a consequence of the number of ‘1’s in the
multiplicand which can also have an impact on the number of
clock cycles required to complete the multiplication. If a ‘1’ is
in the most significant bit position of the lower byte of the
shifted multiplicand when it is shifted left, then this ‘1’ bit
must appear in the least significant bit of the upper byte of the
shifted multiplicand after the shift left of the shifted
multiplicand has been completed. This requires some
additional programming which consequently increases the
number of clock cycles.

The sawtooth pattern of the 8x8 multiplier from the single
microcontroller shown in Figure 2 arises as result of the
sequence of test patterns applied to the multiplier. As the
number of clock cycles rises towards a peak, the number of
‘1’s in the multiplicand will be steadily increasing. As the
multiplicand reaches its maximum value of FF a peak will
result. The next test pattern will load 00 into the multiplicand
which is a reduction of eight ‘1’s causing the number of clock
cycles required to fall abruptly. This can be demonstrated in
Figure 2 as the number of clock cycles rises toward the first
peak. At the first peak the test pattern FFx03 is executed when
136 clock cycles are required. The next text pattern executed is
00x0C (arrowed) requiring only 117 clock cycles, an abrupt
reduction in the number of clock cycles required, and thus the
sawtooth pattern is generated.

Figure 2 Number of clock cycles agiainst Test Patterns for
single microcontroller 8x8 multiplier (dotted), and dual
microcontroller 8x8 multiplier (solid).

It would be a natural assumption to believe that the results
for the 8x8 multiplier carried out by the dual microcontroller
would follow a similar pattern, however upon consultation of
the results in Figure 2, this is shown not to be the case. It would
also be hoped that the execution times for the dual
microcontroller solution would be less than that of the single
microcontroller as the dual microcontroller solution should
complete the multiplication in half the time, but again from
Figure 2 this is seen not to be the case. This can be explained
by consideration of Table 2.

Tx Time A is the number of clock cycles required to transfer
the one byte multiplicand and one byte multiplier from the
Master to the Slave. The Multiply Time is the number of clock
cycles required to complete the shift and add process
completed simultaneously in the Master and the Slave. Tx
Time B is the number of clock cycles required for the Slave to
transfer the calculated two byte partial product to the Master
and the Addition Time is the number of clock cycles required
to add the partial product generated by the Master to the partial
product generated by the Slave. The table shows that there is a
steady increase in the Multiply Time as the number of ‘1’s in
the multiplier and Multiplicand increases, however this
increase in the number of clock cycles is relatively small from
80 clock cycles for the 00x33 (six ‘1’s in the multiplier)
multiply to 107 clock cycles for the FFxFF (eight ‘1’s in the
multiplier and eight ‘1’s in the multiplicand). The addition time
is relatively constant at seven or eight clock cycles. The
problem with the eight bit multiplier carried out by two
microcontrollers is the significant amount of time to transfer
the data from Master to Slave and back again which on
occasion exceeds and is certainly comparable to, the number of
clock cycles required to carry out the multiply. Thus, the speed
up S(n) for the dual microcontroller system which would have
hoped to be approaching two, is actually less than one for all
multiplications completed in the test. This means that the single
multiplier is actually faster at carrying out a multiplication than
the dual, parallel processing microcontroller system, due to the
overhead of the data transfer time between the Master and the
Slave.

The results shown in Figure 3 for the 16x16 multiply
completed on a single microcontroller follows a similar
sawtooth pattern as the 8x8 multiply for the single
microcontroller shown in Figure 2. As expected, the number of
clock cycles required to complete the multiplication increases
as the number of ‘1’s in the multiplier and the multiplicand
increases. Results for the 16x16 multiply for the dual parallel
processing microcontroller system depicted in Figure 3 again
shows the number of clock cycles required to complete the
multiplication increases as the number of ‘1’s in the
multiplicand and multiplier increase. A drop in the number of
clock cycles occurs when the number of ‘0’s in the test pattern

Table 2 Component cycle times for dual microcontroller 8x8
multiplier

Multiply 00x33 C3x33 CCxCC FFxFC FFxFF

Tx Time A 44 50 44 50 44

Multiply Time 80 80 83 105 107

Tx Time B 31 38 28 28 37

Addition Time 7 7 7 8 8

Total time 162 175 162 191 196

Figure 3 Number of clock cycles agiainst Test Patterns for
single microcontroller 16x16 multiplier (dotted), and dual
microcontroller 16x16 multiplier (solid).

increases relative to the previous test pattern e.g. FFFFx00FF
requires 545 clock cycles while the next test pattern carried out
is 0000x0F00 (arrowed) which requires only 407 clock cycles.
The detail of the clock cycle breakdown for a number of 16x16
multiplications is shown in Table 3. The significant difference
between the results shown in Table 3 compared with those in
Table 2 is that the time to transfer the data between master and
slave is significantly less than the multiply time. Thus the total
cycles required to complete all possible multiplications by the
dual microcontroller system is less than the equivalent
multiplications carried out by the single microcontroller. This
yields the speed up performance shown in Figure 4. From
Figure 4 it can be seen that the average speed up factor for the
dual microcontroller carrying out a 16x16 multiply is 1.5.

Table 3 Component cycle times for dual microcontroller 16x16
multiplier

Multiply FF00x

00F0

F0F0x

0F0F

0F0Fx

F0FF

FFFFx

F0F0

FFFFx

FFFF

Tx Time A 64 64 64 64 64

Multiply Time 275 313 377 329 425

Tx Time B 58 61 58 46 46

Addition Time 10 10 14 15 15

Total Time 407 448 513 454 550

Figure 4 Speed-up against Test Patterns for 16x16 dual
microcontroller

For comparison, speed up factor of 2 is highlighted in Figure 4
to indicate the maximum possible speed up for two
microcontrollers operating in parallel and speed up factor of 1
is highlighted to show the speed up for a single
microcontroller.

For an algorithm with good parallel processing potential
such as the multiply operation where the majority of the
calculation can be shared equally between n microcontrollers,
generally from equation (1), tp(n) can be approximated as:

transfer

p

p t
n

t
nt 

)1(
)(

(3)

Where n is the number of microcontrollers and
n

t p)1(
assumes

that the algorithm can be completed in the time required to
complete the operation by one microcontroller divided by the
number of microcontrollers in the system n. In this case where
n=2, the two microcontrollers complete the mathematical
operation in half the time required to complete the operation by
a single microcontroller and ttransfer is the time required to
transfer data between Master and Slave, and Slave and Master.

By substituting into (1) it can be shown that, for a dual
microprocessor system, to achieve a speed-up factor of S(n) =
1, tp(1) is required to be completed in twice the time required to
complete the data transfer, ttransfer. In order to achieve a
moderate speed up factor of 1.5, tp(1) is required to be
completed in six times the time required to complete the data
transfer.

IV. CONCLUSION

An 8x8 bit multiplication and a 16x16 bit multiplication
have been implemented on a single microcontroller and a dual
microcontroller operating as a parallel processing system.
Results have shown that for the 8x8 multiplication the speed-
up factor S(n) was found to be less than 1. This is due to the
relatively large time required to transfer data between the two
microcontrollers compared to the time required to complete the
multiply operation. The time effectively saved by completing
the multiplication using two microcontrollers is lost with the
time required to transfer the data between the two
microcontrollers . For the 16 x 16 bit multiplication a moderate
average speed up factor of 1.5 was achieved due to the fact that
the transfer time is very much less than the multiply time. The

overall deciding factor as to whether speed-up can be achieved
was found to be dependent upon the time required to transfer
data between the two microcontrollers. A formula for an
algorithm with good parallel processing capability has been
developed to calculate whether speed-up can be achieved. This
formula indicates that to achieve a speed-up factor of 1, the
time required to complete the calculation on a single processor
must be twice the time required to transfer the data between
two microcontrollers. To achieve a good speed-up factor of 1.8
for a two microcontroller parallel processing system, from the
developed equation, the time required to complete the
operation on a single microcontroller must be ten times that
required to transfer the data between the two microcontrollers.
To significantly improve the speed up time for the parallel
processing system the challenge will be to reduce the transfer
time between the microcontrollers which will provide some
focus for future work.

REFERENCES

[1] F. Gebali, Algorithms and Parallel Computing: John Wiley & Sons,
2011.

[2] Y.-l. Hu, J.-l. Cao, F. Ran, and Z.-j. Liang, "Design of a high
performance microcontroller," in High Density Microsystem Design and
Packaging and Component Failure Analysis, 2004. HDP '04. Proceeding
of the Sixth IEEE CPMT Conference on, 2004, pp. 25-28.

[3] J. Von Neumann, "First draft report on the EDVAC," 1945.

[4] "PIC16F877 Datasheet," Microchip Technology. Accessed on 2/2/2012

[5] T. Sakamoto and T. Hase, "Software JPEG for a 32-bit MCU with dual
issue," Consumer Electronics, IEEE Transactions on , vol.44, no.4,
pp.1334-1341, Nov 1998

[6] O. Maslennikov, J. Shevtshenko, and A. Sergyienko, "Configurable
microcontroller array," Parallel Computing in Electrical Engineering,
2002. PARELEC '02. Proceedings. International Conference on , vol.,
no., pp. 47- 49, 2002

[7] T. Schubert and B. Becker, "Lemma exchange in a microcontroller
based parallel SAT solver," VLSI, 2005. Proceedings. IEEE Computer
Society Annual Symposium on , vol., no., pp. 142- 147, 11-12 May 2005

[8] M. Bin, "Dual-microcontroller based GPRS data transmission control
system design," Information Technology and Artificial Intelligence
Conference (ITAIC), 2011 6th IEEE Joint International , vol.1, no.,
pp.101-104, 20-22 Aug. 2011

[9] G. M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," in AFIPS Conference, New Jersey,
1967, pp. 483-485.

