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Abstract— In this paper, an observer-based secure 

communication system composed of four chaotic oscillators is 

proposed. Observer based synchronization is achieved between 

two of these oscillators and employed as a transmitter and a 

receiver. The other two oscillators are indirectly coupled and 

are employed as keystream generators. The novelty lies in the 

generation of the same chaotic keystream both in the 

transmitter and receiver side for encryption and decryption 

purposes. We show, in particular, that it is possible to 

synchronize the two keystream generators even though they 

are not directly coupled. So doing, an estimation of the 

keystream is obtained allowing decrypting the message. The 

performance of the proposed communication scheme is shown 

via simulation using the Chua and Lorenz oscillators. 

Keywords- Chaotic communication systems, chaotic 

synchronization, Lorenz System, Chua System 

I.  INTRODUCTION 

In recent years, there has been a growing interest in the 

derivation of secure communication schemes using chaotic 

oscillators [1-6]. In effect, various chaotic synchronization 

methods have been proposed [3-5, 7, 8] together with a 

number of modulation methods for chaotic communication 

systems such as chaotic masking [1, 5], parameter 

modulation techniques [5], chaotic shift keying [2, 5], just to 

mention a few. Each of these methods requires chaotic 

synchronization for message extraction at the receiver side. 

On the other hand, different attacks methods have been 

derived in order to test the security of the modulation 

methods; namely the non-linear dynamics forecasting [9, 

10], return maps analysis [11], artificial neural network 

analysis [12] and so on. As a result, methods such as chaotic 

masking, parameter modulation techniques and chaotic shift 

keying were found not to be secure. Similarly, other 

proposed methods based on the projective synchronization 

[13], phase synchronization [14], generalized synchronized 

[15] were broken as well [16, 17]. Methods based on the 

time delay or the hyperchaos were also looked upon for 

increasing the security but they too were found not to be 

entirely convincing [18, 19]. Therefore, there is a need of 

developing a method which will resist all the attack 

methods. 

In [6], a method based on encryption technique was 

proposed, where a different output from chaotic transmitter 

which was transmitted in the channel was used as a 

keystream to encrypt the message signal. The encrypted 

message signal masked with another output of the chaotic 

oscillator was employed as the transmitted signal. It was 

claimed that since the intruder could not get hold of the 

keystream, it was impossible for the attackers to extract the 

message.  Unfortunately a later work done by Parker & 

Short [20] showed that it was still possible to extract the 

keystream from the transmitted chaotic signal since the 

keystream carried the information of the dynamics of the 

transmitter. In fact, since, both the carrier and keystream 

were the outputs of same oscillator; the carrier held the 

dynamics of the keystream as well. Therefore, it was 

impossible to hide the dynamics of the keystream from 

intruders, as a signal has to be transmitted from the 

transmitter to the receiver for synchronization and message 

transmission purpose. However, since the principle of the 

method proposed in [6] is nevertheless interesting, there is a 

real incentive for finding ways for improving the method by 

eliminating its shortcomings. Based on this observation, an 

indirect coupled synchronization scheme was proposed in 

[7]. The scheme is composed of four chaotic oscillators. 

First observer based chaotic synchronization is performed 

between the two oscillators and are employed as transmitter 

and receiver. The other two oscillators are indirectly 

coupled and are employed as keystream generators. The key 

idea therefore is to generate a chaotic carrier signal from 

one oscillator while a chaotic keystream is generated from 

another chaotic oscillator. A suitable encryption rule is 

employed in order to encrypt the message using the 

generated keystream. The encrypted message is then 

modulated with the chaotic carrier in order to generate the 

transmitted signal.  As a result, the transmitted signal does 

not contain the dynamics of the keystream oscillator, hence 

making it difficult for intruders to generate the keystream 

with the sole knowledge of the transmitted chaotic signal. 

At the receiver, the same keystream is generated and a 

decryption rule is applied to the recovered encrypted 

message signal that has been obtained from chaotic 

synchronization. This particular scheme relies on the fact 



that it is possible to synchronize two chaotic oscillators even 

though they are not coupled together directly. However, the 

proposed scheme only works for some classes of chaotic 

oscillators. 

In this paper, we propose to extend the previous indirect 

coupled synchronization scheme to a larger class of chaotic 

oscillators. For this the receiver is replaced by appropriate 

observers. 

An outline of the paper is as follow:  In Section II, the 

main methodology of the proposed technique is explained. 

In addition, indirect coupled synchronization is proven for a 

class of chaotic systems. In Section III, the proposed 

synchronization and secure chaotic communication scheme 

are implemented using the Lorenz system and Chua's 

system. In Section IV, simulation is carried out and results 

are outlined to show the performance of the proposed 

communication scheme. Finally in Section V, concluding 

remarks are made. 

II. THE PROPOSED COMMUNICATION SYSTEM 

The proposed chaotic communication scheme, based on 

cryptography, is shown in Fig. 1. The novelty here lies in 

the generation of the keystream. The chaotic transmitter (T) 

is first used to generate two output signals, y1(t) and y2(t). 

The signal y1(t) is used for modulation purpose while output 

y2(t) is used to drive chaotic oscillator (A) whose structure is 

different from the transmitter (T). The output k(t) of key 

generator (A) is used as a keystream to encrypt the  message 

m(t) using an  encryption rule     . The resulting encrypted 

signal         is masked using y1(t) yielding the 

transmitted signal yt(t). The output yt(t) is fed back into the 

transmitter in the form of an output injection with the aim of 

cancelling the effect of non-linearity while performing 

synchronization at the receiver side. The modulated 

transmitted signal yt(t) is sent through the channel to the 

receiver.  

At the receiver end, upon receiving the signal   
    , the 

chaotic observer (R) permits to obtain an estimate  ̂     and 

 ̂    of the signals y1(t) and y2(t) respectively. The signals 

 ̂     and   
     are used to generate an estimate  ̂       of 

the encrypted signal        . The estimate  ̂     is used to 

drive the chaotic key generator (B) - which is similar in 

structure to generator (A) – and which yields the keystream 

estimate  ̂ (t).  Consequently, the message m(t) can be 

recovered by using the decryption rule       . 
Note that since, the chaotic key generators (A) and (B) are 

driven by y2(t) and  ̂     respectively, an indirect coupled 

synchronization is required between these two chaotic 

oscillators. Also, y2(t) and  ̂     are outputs of chaotic 

transmitter (T) and receiver (R) respectively and will be 

equal once synchronization is achieved. Intuitively, one 

would expect this synchronization to take place. However, 

in what follows this will be proven mathematically for a 

class of chaotic systems.  

The important part of this method is the generation of the 

keystream. No information regarding the keystream is 

transmitted in the channel. In [6], it was possible to estimate 

the particular state which was used as keystream (as shown 

in [20]) since the state that was transmitted in the channel 

had some information of the dynamics of the keystream as 

they were the state variables of same chaotic oscillator.  

In contrast, in this method, the keystream is generated from 

a chaotic oscillator with a totally different structure. It will 

not be possible to estimate the dynamics of the chaotic key 

generator from the signal being transmitted in the channel 

by using the method mentioned in [20]. Even if the intruder 

manages to get hold of the encrypted signal from the 

transmitted signal, without the knowledge of keystream, the 

message signal can’t be decrypted back. Therefore, a secure 

communication link can be realized by implementing the 

proposed method. 

Based on the communication scheme illustrated by Fig. 1, 

we assume that the transmitter oscillator (T) described by a 

dynamical system of the following form:  
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where the state      with initial condition        . 

The outputs of the oscillator       and     . The 

matrices F, C1 and C2 are of appropriate dimension. The 

signal      is the transmitted signal where      is the 

encryption function using key k(t) and the function g is a 

smooth bounded function of time. 

The keystream k(t) is generated using another chaotic 

oscillator of similar form: 
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which is driven by the output       . Here,      (q is not 

necessarily equal to n),     is the keystream, h is an 

analytical vector function and b2 is a smooth bounded 

function of time. It is assumed that the channel is perfect 

and that no distortion of the transmitted signal has taken 

place; that is      
 . 

The receiving chaotic oscillator (R) is given by:  
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Fig. 1. Block diagram of the proposed chaotic communication based on cryptography. 

Finally, the key generator (B) is given by: 
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We shall make the following assumptions: 

 

A1) There exist symmetric positive definite (SPD) matrices 

P1, P2, Q1 and Q2 such that 

11111 )()( QPKCFKCFP T   

222 QPAAP T 
 

 
A2) The output function h(x) is globally Lipschitzian with 

respect to x. 

 

The objective is to show that the transmitter (T) and the 

receiver (R) synchronize as well as generators (A) and (B) 

are synchronized with each other even though there is no 

direct link between them. In effect, based on the above 

assumptions, we state the following: 

 

Theorem 1. Under the assumption A1), there exist two 

constants 0,   such that )0(ˆ)0()(ˆ)( xxetxtx t    

for all 0t . In other words, the receiver (R) synchronizes 

exponentially with the transmitter (T). 

 

Theorem 2. Assume that system (A) and (B) satisfies 

assumption A1), then 0)(ˆ)(lim  tztzt . That is, the 

keystream generator (A) synchronizes asymptotically with 

the keystream generator (B). 

 

The proof of these two theorems are done in a similar 

fashion as in [7]. 

III. APPLICATION OF THE PROPOSED TECHNIQUE USING 

THE CHUA AND THE LORENZ OSCILLATOR 

In this section, the performance of the proposed 

communication system is demonstrated using the Lorenz 

system as the transmitter (T) and the receiver (R). More 

specifically, (T) and (R) are chosen as: 
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(6) 

Again it can easily be seen that (6) are in the form (1) 

and (3) with )( tyF  given as: 
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For these systems Assumption A1 is satisfied for the 

following matrices 2P  and 2Q : 
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and K is chosen as  
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where θ>0. 
 

For the key generating oscillators A and B, the Chua’s 

system is adopted given as below: 
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The non-linear function )(f  is a piecewise linear 

function given as: 

).11)((5.0)(   bab GGGf  

Note that equation (7) are in the form (2) and (4) 

respectively with A  and ),( 22 ytb  given as: 
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It can also be shown that Assumption A1) is satisfied for 

the following matrices 2P  and 2Q : 



















3

2

1

2

00

00

00

l

l

l

P ,

200

0

02

 &

3

21

11

2























l

ll

ll







Q  

where 0,,, 321 lll , ,0,0   32 ll   and .0 2
4

1 ll


  

Finally, it is obvious that A2) is satisfied. For the key 

generating oscillators A and B, the Lorenz system defined 

as is adopted: 

The encryption function (.)e  used is a n-shift cipher 

algorithm given as: (as used in [6]): 
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is a non-linear function given by:  

,

2for     ,2

for            ,

2for     ,2

),(
















hkmhhkm

hkmhkm

hkmhhkm

kmf

 
with h being an encryption parameter which is chosen such 

that m and k lie within the interval ],[ hh . 

Once the keystream generator (A) synchronizes 

asymptotically with generator (B), the message )(tm  can be 

recovered using a decryption rule corresponding to the 

encryption rule and which is given by:
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where )(ˆ tk  is the 

estimated key stream and .ˆ))((ˆ 1yytme t   

In the next section, simulations are carried out using 

Matlab/Simulink and it will be shown that the proposed 

method is able to synchronize satisfactorily and extract the 

message successfully. 

 

IV. SIMULATION RESULTS 

The parameters employed in equation (15,16,18 and 19) 

are as follows: 
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The encryption parameter h  is chosen to be 3.0  and the 

message m(t) is taken as a square wave modulating digital 

binary bits. Also in encryption rule, a 30-shift cipher is 

used. The initial conditions for each oscillator are chosen to 

arbitrarily different. 

Fig. 2 shows the autocorrelation function of the 

keystream signal )(tk . It is clear that the keystream is not 

similar to itself with any amount of time shift so its 

autocorrelation function has only a single spike at point of 

zero time shift. This means the keystream generated is 

chaotic in nature and therefore has limited predictability. 

Fig. 3 shows the encrypted message signal and signal )(tk  

as keystream. Fig. 4 depicts the transmitted chaotic carrier 

and it can be seen that message signal is totally buried inside 

it. 

Fig. 5 illustrates the error in estimating the keystream and 

it can be seen that although two oscillators are starting from 

different initial conditions, the error converges rapidly to 

zero after some initial period taken for synchronization.  

Fig. 6 shows the performance of the proposed method in 

decrypting the message signal back and it is readily seen 

that the transmitted message signal has been estimated 

convincingly. The method proposed here is an improved 

technique from the one mentioned in [6] where the 

keystream is utilized from the chaotic oscillators that have 

been indirectly coupled. In [6], keystream from the same 

chaotic oscillator, from where the transmitted chaotic signal 

was generated, was used. The authors in that paper has 

successfully shown that attack methods such as [10] that 

uses NLD based forecasting is not useful for the chaotic 

system based on cryptography. Therefore, the method 

proposed here is also immune to the attack method proposed 

in [10]. The problem in [6] was that the keystream could 

successfully be estimated  as mentioned in [20]. Since 



keystream was generated from the same oscillator as the 

transmitted signal, the dynamics of the keystream could be 

estimated, therefore possibility of revealing the transmitted 

message. In this method, however, the keystream is 

generated via indirect coupled synchronization in the 

transmitter and receiver from separate chaotic oscillators 

which have different structure and dynamics from the 

transmitter. Therefore, the method in [20] will not be useful 

to estimate the keystream. 

Next, we will see another popular attack based on RM on 

the proposed method. It turns out that it destroys the 

possibility of the phase space reconstruction of the sender 

dynamics by analysing the transmitted chaotic signal using 

RM since it blurs the map and no distinct branching is seen. 

Fig. 7 shows the RM of the transmitted signal generated 

from the proposed system that modulates the digital bits. It 

can be seen that the map is totally blurred with no apparent 

information in it regarding the transmitted bits. Even if the 

local maxima and minima, i.e. small fluctuations, are 

filtered out from the transmitted signal, and RM is plotted, 

as shown in Fig. 8, there is no distinct branching of the RM 

to reveal the transmitted bits. Therefore, it can be concluded 

that the proposed method is immune to methods based on 

NLD and RM. 

 

 
Fig. 2. Autocorrelation of key stream signal k(t). 

 

 
Fig. 3. Encrypted message signal        . 

 
Fig. 4. Transmitted signal yt(t) generated from oscillator T.  

 

 
Fig. 5. Synchronization error in estimation of keystream. 

 

 
Fig. 6. Plot of the extracted message mr(t) and m(t). 
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Fig. 7. Return map of the transmitted signal yt(t). 

 

 
 

Fig. 7. Return map (small fluctuations filtered out) of the 

transmitted signal yt(t). 

 

V. CONCLUSIONS 

In this paper, a method of synchronizing two chaotic 

oscillators that are not directly coupled together in a master-

slave configuration is proposed and applied to generate the 

keystream at transmitter and receiver. Synchronization is 

explained and simulation results are presented. The main 

advantage of the proposed method is that, unlike previous 

work on the topic, the keystream is generated from a 

different oscillator to that of the transmitter and hence 

improving the security of the system; since the transmitted 

signal does not include the information of the dynamics of 

the key generator. Consequently, even if the encrypted 

signal is known to the intruders, without the knowledge of 

the keystream extraction of the message signal will not be 

possible providing secure communication link. 
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