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Abstract—This paper investigates the application of complex 

wavelet transforms to the field of digital data hiding.  

Complex wavelets offer improved directional selectivity and 

shift invariance over their discretely sampled counterparts 

allowing for better adaptation of watermark distortions to 

the host media. Two methods of deriving visual models for 

the watermarking system are adapted to the complex 

wavelet transforms and their performances are compared. 

To produce improved capacity a spread transform 

embedding algorithm is devised, this combines the 

robustness of spread spectrum methods with the high 

capacity of quantization based methods. Using established 

information theoretic methods, limits of watermark capacity 

are derived that demonstrate the superiority of complex 

wavelets over discretely sampled wavelets.  Finally results 

for the algorithm against commonly used attacks 

demonstrate its robustness and the improved performance 

offered by complex wavelet transforms. 

 

Index Terms—Complex wavelets, spread transform, 

capacity, human visual system, watermarking. 

 

I.  INTRODUCTION 

DIGITAL data hiding has gained popularity in recent 

years as a way of settling intellectual property rights 

disputes, the ease with which digital media can be 

perfectly duplicated and distributed has led to a need for a 

method of identifying the original owner of the image.    

Data hiding allows for the embedding of information 

in a host signal that can later be extracted as proof of 

ownership or for some other purpose.  This information 

directly into the host media so that it can not be removed 

without applying significant distortion to the host.  

Robustness, imperceptibility and capacity are the three 

conflicting attributes of data hiding systems.  This paper 

aims to achieve new standards of imperceptibility by 

adapting and comparing two main methods of deriving 

visual models for watermarking to the complex wavelet 

transforms.  One is derived from the wavelet coefficients 

using visual tests and the other from an adaptation of a 

universal spatial JND (just noticeable distortion) profile.   

It is proposed that higher levels of capacity and 

robustness can be achieved through the use of spread 

transform data hiding.  Spread transform was devised 

with the aim of combining the two main methods of data 

hiding, Spread Spectrum (SS) and Quantization Index 

Modulation (QIM) [2].  It also incorporates dual tree 

wavelets that lead to improved imperceptibility over 

discretely sampled wavelets.   

Recently there has been a move towards a theoretical 

analysis of the maximum achievable performance of 

watermarking schemes.  To address this, Moulin et al. 

[11, 12] have developed an information theoretic model 

that models the watermarking situation as a game 

between the attacker and embedder with each trying to 

maximize their advantage over a range of Gaussian 

distributed channels. 

In this paper the capacity of several different 

embedding domains and images are derived by modeling 

the considered wavelet decompositions as a series of 

parallel Gaussian channels. Using an established 

statistical model per-channel capacities are 

 derived for the case of spread transform watermarking 

[16-17]. The optimal attack and embedding strategies are 

derived through the use of a game theoretic approach. 

 

Manuscript received February 8, 2010. This work was supported in 
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Finally empirical results for a range of common attacks 

such as gaussian noise, compression and filtering are 

given for a range of different images and embedding 

conditions. 

II.  EMBEDDING DOMAIN 

An important consideration is the domain in which the 

watermarking will take place.  Early watermarking 

algorithms used the spatial domain [13].  However these 

algorithms showed poor robustness, for this reason 

watermarking moved to the transform domain.  Some 

transform domains used include the DFT (discrete fourier 

transform) and DCT (discrete cosine transform).  

Although these were an improvement over the spatial 

domain they have been replaced in recent years by the 

wavelet domain.  The wavelet domain provides a much 

better approximation of the HVS (human visual system) 

and possesses better energy compaction properties.   

A.  Discrete Wavelet Transform 

The DWT consists of filtering the source image with 

both a high pass (detail) and low pass (coarse) filter, and 

then down-sampling then result.  The process is then 

repeated in the other direction for both the coarse and 

detail sub-band to create 4 sub-bands - the low pass sub-

band and the horizontal, vertical and diagonal detail sub-

bands.  The wavelet filter used in the proposed algorithm 

is the biorthogonal 9/7 tap filter as used in the JPEG2000 

compression algorithm. 

The disadvantage of the DWT is its inability to 

differentiate between opposing diagonal features as 

shown in figure 1 with both being represented in the same 

diagonal sub-band. 

 

 

Figure 1.  Note how the caption is centered in the column. 

B. Dual Tree Complex Wavelet Transform 

The DT DWT uses two DWTs acting in parallel on the 

same data.  It is the real version of the dual tree complex 

wavelet transform (DT CWT) [8].  One DWT acts upon 

the even samples of the data while the other acts upon the 

odd.  The difference and sum of these two DWT 

decomposition are then taken to produce the two trees of 

the DTWT (figure 3).   

Although the complex version has the advantage of 

excellent shift invariance this comes at the cost of 4:1 

redundancy for 2-D signals which places restrictions 

upon the embedding algorithm as watermark in the 

wavelet domain must have a valid representation in the 

spatial domain.  For this reason it was decided to use the 

real version developed by Selesnick instead which has a 

much more manageable redundancy of 2:1 (figure 2) for 

2-D signals allowing for more freedom when embedding 

[15]. 

The DTWT overcomes the problem of the DWT 

lacking directional selectivity.  The DTWT can 

discriminate between opposing diagonals with six 

different sub-bands orientated at 15°, 75°, 45°, -15°, -75° 

and -45° (figure 4).  This also allows better representation 

of vertical and horizontal features. 

 

 

Figure 2.  DTWT Decomposition 

 
 

Figure 3.  DTWT Filterbank 

 

Figure 4.  DTWT Filterbank 

B. Non Redundant Complex Wavelet 

The non redundant complex wavelet transform has 

been developed by Fernandes et al. [5] as an alternative to 

the class of over complete, redundant complex wavelet 

transforms.  It makes use of a tri-band filterbank where 

the data is down-sampled by 3 at each stage.     

There are two filterbanks NRWT and NCWT defined 

that are applied to real and complex inputs respectively.  

In the case of the NRWT the output consists of one real 
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part and two complex outputs.  These two complex 

outputs are conjugates of each other and so one can be 

disregarded (figure 6).  In the case of the NCWT the 

output consists of 3 complex outputs. 

The sub-bands produced are orientated at 0°, 90°, 45° 

and -45°, both real and imaginary (figure 7).  While 

offering less directional sub-bands than the DTCWT the 

NRCWT is able to discriminate between opposing 

diagonals with no increase in redundancy. 

 

 

Figure 5.  NRCWT Decomposition 

 

Figure 6.  NRCWT Filterbank for real and complex inputs respectively 

 

Figure 7.  NRCWT Coefficients 

III.  VISUAL MODEL 

To satisfy the imperceptibility requirement it is 

necessary to limit the distortion applied to each individual 

coefficient of the wavelet decomposition.  For this 

purpose a JND profile for each individual coefficient 

must be derived.  Two main factors can be identified as 

contributing the masking effect of the human visual 

system, these are: 

 

Luminance Masking: Distortions in bright and very 

dark areas of the image are less visible than those in areas 

of the image with middling brightness. 

 

Spatial Masking: Textured areas and edges in an image 

are much better at masking distortions than smoother 

areas where the spatial variation is much smaller. 

 

Two methods of deriving the JND model are adapted 

for use in the algorithm.  One that directly uses the 

wavelet coefficients and a series of visual test, and 

another that adapts a spatial JND profile to fit the sub-

band structure. 

 

A. Loo’s Method 

A series of visual tests were conducted to obtain the 

JND value for each of the individual coefficients down to 

the 5
th

 level of decomposition.  The algorithm was 

applied using both the DWT and DT DWT domains so 

tests were conducted for both.  Loo [9] proposed a JND 

model calculated as shown in equation 3.1. 

 

2

,

2

,

2

, ),( θθθ lll CxkBvug +=                   (1) 

 

Where k and C are sub-band dependent constants, 

dependent on the level l and orientation θ.  The value x is 

the absolute mean value of a 3x3 gaussian window of 

standard deviation 0.5 centred round the coefficient at 

position (x,y).   B is a measure of the spatial brightness 

corresponding to the coefficient at position (u,v). 

 

1)56.0),((12.2 2 +−= vuyB              (2) 

1)53.0),((03.2 2 +−= vuyB              (3) 

1)55.0),((43.2 2 +−= vuyB              (4) 

 

Where y represents the value of the level 5 low-pass 

coefficient corresponding to position (u,v).  The visual 

tests were conducted by setting all sub-bands of an image 

to 0.  Then all the values in the sub-band under 

consideration were set randomly distributed in the range 

[0,n].  The image was then recomposed and added to a 

sine wave grating of the appropriate frequency and 

orientation.  The value n was then increased uniformly 

until the distortion became visible.  Using the value of n 

and the average value of the coefficients composing the 

sine wave grating, an estimate of k for each level and 

orientation was derived.  The tests were repeated with 

different amplitudes of sine wave gratings to obtain 

varied results for multiple values of x.  The results for 

both the DWT, DTWT and NRCWT are shown in table 

1. 
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TABLE I.  LOO’S JND FACTORS 

Sub-band DWT-k DWT-C DTDWT-k DTDWT-C NRCWT-k NRCWT-C 

Level 1 – Diag. 0.33 5 1.00 6 0.25 3 

Level 1 – 

Hor./Ver. 
0.20 3 0.60 4.5 0.16 2 

Level 2 – Diag. 0.25 4 0.50 1.5 0.15 2 

Level 2 – 

Hor./Ver. 
0.14 2 0.25 1 0.145 1 

Level 3 – Diag. 0.25 1 0.25 1 0.145 1 

Level 3 – 

Hor./Ver. 
0.11 1 0.21 1 0.14 1 

Level 4 – Diag. 0.18 1 0.20 1 - - 

Level 4 – 

Hor./Ver. 
0.11 1 0.195 1 - - 

Level 5 – Diag. 0.18 1 0.195 1 - - 

Level 5 – 

Hor./Ver. 
0.11 1 0.19 1 - - 

 

 

Figure 8.  Sine wave grating 

All visual tests were conducted with a gamma 

correction value of 2.1, a resolution of 32 pixels/cm and a 

viewing distance of 30 cm. 

 

Figure 9.  Loo’s JND decomposition for DTWT 

B. Chou’s Method 

Chou’s method [3] operates by composing a full-band 

JND model in the spatial domain and then decomposing it 

into separate sub-band JND profiles.  Similar to Loo’s 

method the JND values are modeled as the dominant 

effects of both overall luminance and luminance contrast.  

The full-band JND model is contructed from the 

following equations: 
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Through visual experiments Chou derived T0, γ and λ 

were found to be 17, 3/128 and ½ respectively.  The 

values bg(x,y) and mg(x,y) are the average background 

luminance and luminance contrast around the pixel at 

(x,y) respectively. They are obtained using the following 

filters: 
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And for average background luminance: 
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Finally, the individual sub-band JND profiles are 

calculated as for a multi-resolution decomposition as 

follows: 
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),( yxJND q
represents the JND value at position (x,y) of 

the qth sub-band.  The factor ωk is calculated as follows: 
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Where p is the number of sub-bands used in the 

decomposition.  Sk denotes the average sensitivity of the 

HVS to distortions in the kth sub-band.  It is calculated 

as: 
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),( vuε  denotes the response curve of the modulation 

transfer function or MTF for 0<=u<=N, 0<=v<=N.  Chou 

proposes the following formula for its calculation: 

 
























Ω

Ω
−

















Ω

Ω
+=

c

vuvu
bavu

00

),(
exp.

),(
.),(ε    (16) 

 
where 

2/1
22

2432
),(




















+








=Ω

N

u

N

v
vu             (17) 

 

Fig 3.4 is derived from the MTF curve modeled by 

a=2.6, b=0.0192, c=1.1 and Ω0=8.772. 

The model as originally proposed by Chou has a linear 

sub-band structure that is not suitable for the 

decomposition structure of the discrete and complex 

wavelet transforms.  For this reason a different sub-band 

structure is proposed for the DTWT (figure 10).  Each 

section of the dual tree decomposition is treated as being 

of the same channel sub-band.  For the DWT only the 

right hand side is used. 

The same sub-band weight is applied to opposing 

halves of the dual tree composition as they are of the 

same orientation and frequency and so can be treated 

identically in this respect.  In addition, to take into 

account the improved directionality of the DTWT a 

different set of filters are used to obtain the value of m 

with G1 and G2 orientated at -15 and + 15 degrees 

respectively and G5 and G6 orientated at -75 and +75 

degrees respectively.  
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m is then calculated using equation (18) 
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Figure 10.  DTWT decomposition for Chou’s Model 

As the NRCWT down-samples by three at each level 

and has only 4 sub-bands at each level the decreased 

number of sub-bands must be taken into account.  

Imaginary and real parts of each sub-band are considered 

JOURNAL OF MULTIMEDIA, VOL. 5, NO. 5, OCTOBER 2010 447

© 2010 ACADEMY PUBLISHER



as being in the same channel  leading to four different 

channels at each level for a total of 13 channels.       

Equation (13) is then altered to take into account the 

reduction in the number of channels in the sub-band 

decomposition and the down-sampling by 3 instead of 2 

at each level 

 

q

i j

tt

fbq

t t

yjxiJNDyxJND ω.)3.,3.(),(
13

0

13

0

22








++= ∑∑

−

=

−

=

 

 

(19) 

 

for   q = 0,1,…,12 and 0 <= x <= N/3
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The calculation of the factor ωq is also calculated to 

take into account the reduction in channels from 15 to 12. 
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Figure 11.  NRCWT decomposition for Chou’s Model 

As can be seen in figure 12 the JND model accurately 

scales JND vales according to edges in the image as well 

as adjusting watermark strength according to background 

luminance.  When compared with figure 9 it can be seen 

that Chou’s model is much more effective at adapting the 

JND values to edges.  Another significant advantage of 

Chou’s model over Loo’s is that it can be applied to any 

wavelet transform without having to do an independent 

set of visual tests.   

 

 

Figure 12.  Chou’s JND decomposition for DTWT 

IV.  SPREAD TRANSFORM EMBEDDING 

Spread transform data hiding was originally proposed 

by Chen and Wornell [2] as an extension of quantization 

index modulation (QIM) where data is quantized using a 

scalar quantizer ∆ to carry data.  It applies QIM in a 

lower dimensional space across several samples in an 

effort to combine the advantages of QIM and spread 

spectrum methods.  Quantization is applied to vectors 

composed of host samples rather than individual host 

samples. 

 

∑ =
=

r

n nn

ST
vxx

1
                            (21) 

 

Where 
ST

x  represents host samples, v a key dependent 

vector and r the length of the vector used.   

 

)]/;()[1()/;( ααα ∆−−+∆= STSTSTST xqxxqx   (22) 

 

Where ∆ is the quantization step used and α is a 

distortion compensation factor that ranges in value from 0 

to 1.  The optimum value of α will vary according to the 

watermark-noise ratio (WNR), with higher levels of  α 

being optimum for higher levels of WNR. 

 

A. Proposed Algorithm 

The proposed algorithm proceeds as follows: 
 

1. A binary pseudo-random key K of the same size as 

the host image is generated (an optional dither can be 

added for increased security).  

 

2. The image is decomposed to 5 levels using either 

discrete or complex wavelet transforms. 

 

3. The JND values for each individual coefficient in 

the decomposition is calculated using either Loo’s 

method or Chou’s method. 

 

4. Coefficients are selected from subbands to carry 

individual watermark bits.   

 

5. The quantization step ∆ is calculated based upon the 

JND values of the coefficients to ensure that embedding 

does not exceed the perceptual limit. 
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6. The current value of the vector projection is 

calculated by multiplication of the host coefficients with 

the key values corresponding to the host coefficients.  

 
7. Individual host coefficients are then scaled 

appropriately so the vector projection corresponds to 

quantization bin equal to the bit to be embedded.  Each 

individual coefficient is scaled by the size of its 

corresponding jnd value.  This jnd value is multiplied by 

the vector quantization step divided by the sum of all jnd 

values corresponding to the vector to be quantized to 

ensure the correct final value of the vector projection.  

Finally it is multiplied by the corresponding value in the 

key dependent vector which will be either 1 or -1. 

 
8. The wavelet sub-bands are then recomposed to give 

the watermarked image. 

 

B. Information Theoretic Analysis 

 

Letting the watermark MSE be equal to D1, the 

attacker distortion equal to D2 and the watermark to noise 

ratio (WNR) equal to 10log10(D1/D2), Eggers and Girod 

[4] show that the effective gain in WNR over QIM when 

using spread transform is equal to: 

 

rWNRWNRr 101 log10+=                 (23) 

 

and that the capacity C of spread transform data hiding 

can be calculated from the capacity of embedding without 

spread transform (r=1) as follows: 

 

r
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C
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rST

)log10( 101,

,

+
=            (24) 

 

Approximations are provided for the optimum spread 

factor r and distortion compensation value α in what they 

call the spread transform scalar costa scheme (ST-SCS) 

which is the algorithm used for embedding in this paper. 

(23) can be solved using (24) 

 

);(max1, dyIC
AWGN

ST
α

=                           (25) 

 

where y is the data received by the decoder, d is equal 

to 0 or 1 for binary data embedding and I is the mutual 

information. (24) is solved through a comparison of the 

PDFs of the transmitted and received data.   Finally the 

power of the watermark distortion is given by (26). 
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The advantage of spread transform is its complete 

independent of interference from the host image.  It also 

offers capacities that are generally higher than spread 

spectrum for low to moderate levels of attack. 

 

1)  Parallel Gaussian Channels 

To derive capacity limits it is necessary to divide the 

source image into separate channels. To divide the 

wavelet coefficients of an image into separate channels 

the model proposed by Lopresto et al. [10] has been used.  

Within this scheme wavelet sub-bands are modeled as 

Gaussian distributions with zero mean and variance 

dependent upon the coefficient’s location within the 

wavelet sub-bands to create independent parallel 

channels.  The coefficients’ variances lie in a quantization 

band k where 1≤k≤K.  The channels are designated as 

follows: 

 

1. Apply 5 levels of DWT or DTCWT. Due to the 

greater down-sampling by 3 at each level of the NRCWT 

only 3 levels of decomposition are used. 

 

2. Calculate the local variance in a 5x5 window for 

finer detail levels (1,2,3) and 3x3 window for coarser 

levels (4,5).  For the NRCWT the 5x5 window is applied 

to levels 1&2 while the 3x3 window is applied to level 3. 

 

3. The natural logarithm of each variance is quantized 

using K levels and step size ∆.  A channel then consists 

of all coefficients with the same quantized variance 

within every sub-band. 

 

The quantizer step size ∆ is determined by the range of 

variances in the sub-band decomposition.  

In this work, K equal to 256 is used.  The estimated 

256 parallel Gaussian channels are shown in figure 13 for 

the DTWT decomposition of the ‘Lena’ image, where 

black = channel 1, white = channel 256. 

Simpler images like ‘Lena’ will tend to have lower 

rates for higher power channels, while textured images 

like ‘Baboon’ will tend to have high power channels with 

high rates. 

     Each channel is assumed to be i.i.d and Gaussian 

with zero mean and variance σk
2
.  Each channel has an 

inverse sub-sampling rate Rk.  For all transforms channels 

are critically sampled so that: 
 

∑
=

=
K

k

kR
1

1                                   (27) 

2)  Watermarking Game 

The problem of finding the capacity can be viewed as a 

game across the parallel gaussian channels [11,12] where 

both embedder and attacker attempt to maximize their 

advantage in every channel.  For the capacity estimates to 

be meaningful distortion constraints are imposed upon 

both the embedder and the attacker.  For the channel 

model under consideration the embedder and attacker 

distortions are given as: 
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∑
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where θ is the distortion modifier for the channel j 

dependent upon the orientation and level of the 

coefficients in the channel, e and a are the weighted MSE 

of the attack and embedding strategy respectively. 

     The three distortions placed upon embedder and 

attacker are: 

 

ke≤0                                       (30) 

kk ae ≤                                      (31) 

kk pa ≤                                      (32) 

 

where pk is the original power of the channel k.  The 

capacity  of the parallel Gaussian channels is then given 

by the maximization-minimization relation shown in  

(33). 
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The solution to (33) for SAWGN attacks is given in the 

following sub-section: 

The SAWGN attack involves both the addition of 

AWGN noise and amplitude scaling by both the 

embedder and attacker.   This differs from the analysis in 

[11] in that amplitude scaling is applied at both attacker 

and embedder, but as in practice embedding distortion is 

a small fraction of the original power in a channel this has 

little effect on the results.   

The capacity results as the total capacity of the image 

(NC) obtained are shown in Table 2 along with the results 

from [6] for comparison purposes in Table 3. It should be 

noted that the analysis in [7] applies the NRCWT to 4 

levels of decomposition rather than 3, but the low number 

of coefficients in the low pass level 3 NRCWT subband 

means that this will have little effect on the results. Also 

given are results for the NC-Spike model [11] where a 2 

channel rather than 256 channel model is considered 

instead. 

 

 

Figure 13.  Lena EQ 256 parallel Gaussian channels for DTWT 

 

 

 

 

 

Figure 14.  Baboon EQ 256 parallel Gaussian channels for DTWT 

 

The subjective levels of distortion allocated to the 

embedder D1 are the same as those employed in [11] and 

[6].  These are 10 for Lena and Peppers, 20 for Barbara, 

and 25 for Baboon. More textured images can tolerate 

more noise before the noise becomes visible. The attacker 

is then allowed to apply two different attack strengths D2.  

These are adjusted relative to the embedding distortion 

and are 2D1, 5D1 and 10D1. 

The NRCWT produces the highest capacity estimates. 

This is a direct result of it producing more high power 

channels than the other wavelet transforms. The DTCWT 

produces the next highest capacity estimates as it still 

produces more high power channels than the DWT. This 

is due to the improved ability of these wavelet transforms 

to represent the host image in the wavelet domain. Higher 

power channels allow for greater robustness against the 

scaling introduced by the attacker and so higher per 

channel capacity. The Baboon image produces the 

highest capacity results, followed by the Peppers image 

and then the Barbara and Lena image. This can be 

explained by reference to the characteristics produced by 

the wavelet decompositions of these images. The large 

textured areas of the Baboon image produce a lot of large 

coefficients that lead to many high power and hence high 

capacity channels. By contrast the smoother images will 

have smaller coefficients and so fewer high power 

channels. It should be noted that a deficiency of this 

analysis is that it employs a simplification in that the host 

data is assumed to be uniform within each spread 

transform quantization cell. Essentially this is the 

equivalent of regarding the host power pk as being 

infinite in each channel; an assumption that leads to an 

under-estimation of the true performance of ST (spread 

spectrum) watermarking. This deficiency will be 

addressed in the next section. 
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TABLE II.  TOTAL SPREAD TRANSFORM DATA HIDING CAPACITIES IN BITS FOR IMAGES OF SIZE 512X512 

12 2DD =  12 5DD =  12 10DD =  Image 
1D  

       NC           NC-Spike        NC         NC-Spike          NC         NC-Spike 

Lena (Daub-8 ST) 

Lena (Bior.9/7 ST) 

Lena (DTCWT ST) 

Lena (NRCWT ST) 

10 19486            17140 

20333            17861   

26118            26717 

37159            31216  

1877            3873                 

2057            4087 

2964            4698 

5108            7596 

371             821                                                                                               

422             778 

565             997 

1123            2317 

Baboon (Daub-8 ST) 

Baboon (Bior.9/7 ST) 

Baboon (DTCWT ST) 

Baboon (NRCWT ST) 

25 48312           49858 

48583           50142 

52231           53038 

60324           62513 

7512           10970                                                                                                 

7692           11077   

8023           11991 

    11842          14953                

1928            3333                                                          

1968            3683 

2576           4264 

3665           5485 

Peppers (Daub-8 ST) 

Peppers (Bior.9/7 ST) 

Peppers (DTCWT ST) 

Peppers (NRCWT ST) 

10 27459            30064 

27338            29702 

31934            35121 

49523            51856 

2479            4574                                                                                                 

2621            4668 

3095            5944       

4374            7845             

391            700                        

430            835 

638            1211 

1606            3387 

Barbara (Daub-8 ST) 

Barbara (Bior.9/7 ST) 

Barbara (DTCWT ST) 

Barbara (NRCWT ST) 

20 18943            27301 

19486            27642 

22749            29737 

37663            38538 

3677            5166                                                                                                

3651            4589  

4153            5432 

5632            6934                 

591            1301                                                                                              

604           1282 

811            1516 

1502           2593 
 

TABLE III.  TOTAL DATA HIDING CAPACITIES IN BITS AS OBTAINED BY GHOUTI [6,7] 

12 2DD =  12 5DD =  Image 
1D  

        NC           NC-Spike         NC          NC-Spike 

Lena (Daub-8 ST) 

Lena (Biorthogonal 9/7) 

Lena (NRCWT) 

10 27664           22080 

27233            21714 

37512            30979 

3677            4818                                                                                                 

3651            4589  

6061            6674                  

Baboon (Daub-8) 

Baboon (Biorthogonal 9/7) 

Baboon (NRCWT) 

25 26347            26148 

24212            25218 

61394            57473 

4018           5455                                                                                                   

3781           5842      

12555         11976              

Peppers (Daub-8) 

Peppers (Biorthogonal 9/7) 

Peppers (NRCWT) 

10 19422           20708 

16922           17852 

44004           33917 

3042            4344                                                                                                 

2790            3962  

7127            6875                  

Barbara (Daub-8) 

Barbara (Biorthogonal 9/7) 

Barbara (NRCWT) 

20 22840          24495 

18289           20026    

39045           37118                  

3683            5475                                                                           

2868            4531    

7041            8081                
 

 

3)  Parallel Gaussian Channels 

A deficiency of the analysis of the previous section is 

that it employs a simplification in that the host data is 

assumed to be uniform within each spread transform 

quantization cell.  Essentially this is the equivalent of 

regarding the host power p as being infinite, an 

assumption that leads to an under-estatimation of the true 

performance of ST watermarking.   

At low DWRs (document-to-watermark ratio) the 

embedding strength will overwhelm the host power and 

the probability that the host data will be quantised to 

anything other than the two centroids at the origin is 

negligible.  In such cases performance can be improved 

by using very small values for the distortion 

compensation factor α.   

This has the effect of dramatically increasing the size 

of the centroids at the origin and hence the robustness.  

As the host data will be gathered around the origin 

between the two possible centroids the accuracy of the 

embedding becomes much less important.  The 

embedding strength needed to shift the host data to the 

appropriate quantization bin being very low.  Effectively 

taking advantage of the low host power the algorithm 

begins to resemble a spread spectrum based one.   
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Perez-Freire at al. [14] term this distortion 

compensated spread spectrum, or DC-SS.  It differs from 

classical SS schemes in that the strength of the watermark 

embedding is not fixed, but adjusted according to the 

distance to the nearest centroid.   

They show that the effective SNR (signal-to-noise 

ratio) when employing such a scheme can be calculated 

as: 

 

( )
( )2

2

11

1

αλξ

λαξ

−+

−
=−SSDCSNR                   (34) 

 

Where: 

 
)10/(10 WNR=ε                                 (35) 

 
)10/(10 DWR=λ                                (36) 

 

The optimum value of α for DC-SS can then be 

calculated as that which minimizes the probability of 

error: 
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    (37) 

 

Finally the capacity of a DC-SS channel is calculated: 

 

( ) ( )SSDCSSDC SNRC −− +≅ 1log
2

1
,, 2αξλ     (38) 

 

As shown in equation 20 the spreading factor r effects 

the WNR.  It also has a corresponding effect on the 

DWR, effectively decreasing the DWR: 

 

rDWRDWRr 101 log10−=                   (39) 

 

At sufficiently low DWR DC-SS will offer improved 

levels of performance over that of standard ST 

embedding.  Table 4 shows capacity estimates obtained 

taking into account the improved performance offered by 

DC-SS in the case of low DWR channels.  The capacity 

increase tends to be relatively more significant for the 

DWT, as it will have more low power channels. 

However, the same trend of the NRCWT and the DTWT 

producing superior capacity estimates remains. 

 

TABLE IV.  TOTAL DATA HIDING CAPCITIES IN BITS AS OBTAINED BY GHOUTI [6,7] 

 

12 2DD =  12 5DD =  Image 
1D  

       NC            NC-Spike          NC         NC-Spike 

Lena (Daub-8 ST) 

Lena (9/7 Linear phase filters ST) 

Lena (DTCWT ST) 

Lena (NRCWT) 

10 19486            17140 

20333            17861   

26118            26717 

37159            31216  

1877            3873           

2057            4087 

2964            4698 

5108            7596 

Baboon (Daub-8) 

Baboon (9/7 Linear phase filters) 

Baboon (DTCWT) 

Baboon (NRCWT) 

25 48312           49858 

48583           50142 

52231           53038 

60324           62513 

7512           10970                                                                                                 

7692           11077   

8023           11991 

      11842          14953                

Peppers (Daub-8) 

Peppers (9/7 Linear phase filters) 

Peppers (DTCWT) 

Peppers (NRCWT) 

10 27459            30064 

27338            29702 

31934            35121 

49523            51856 

2479            4574                                            

2621            4668 

3095            5944       

4374            7845             

Barbara (Daub-8) 

Barbara (9/7 Linear phase filters) 

Barbara (DTCWT) 

Barbara (NRCWT) 

20 18943            27301 

19486            27642 

22749            29737 

37663            38538 

3677            5166                                                                                                

3651            4589  

4153            5432 

5632            6934                 
 

3)  Fixed Embedding Strategies 

The problem with the distortion measure used is that 

unacceptably large local distortions can be globally 

compensated.  The optimised embedding strategies take 

no account of the requirement for imperceptibility.  For 

this reason in this section the JND models derived in 

section II are taken into account when applying the 

Gaussian watermarking game. 

The embedder in the Gaussian watermarking game can 

take perceptual constraints into account by allocating 

embedding strength to channels based on a fixed 

embedding strategy.  In addition to the two JND models 

described in section II, both PSC compliant watermarking 
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and even white embedding are taken into account. 

 

1. Embedding energy allocated optimally as 

calculated in previous section. 

2. Embedding energy allocated proportionally to 

JND profile derived by Chou’s method. 

3. Embedding energy allocated proportionally to 

JND profile derived by Loo’s method. 

4. Embedding energy allocated proportionally to 

host energy of channel. 

5. Embedding energy allocated evenly across all 

channels. 

 

The results for the different wavelet transforms are 

shown in figures 15-18. For relatively smooth images like 

Peppers and Lena Chou’s JND is closer to the optimum 

embedding allocation. This is due to the ability of Chou’s 

JND to more effectively isolate edges in the images. 

However for relatively textured images like Baboon and 

Barbara Loo’s JND is closer to the optimal allocation. 

This is due to the weakness of Chou’s JND when it 

comes to modelling textures, while due to being based on 

the wavelet coefficients; Loo’s JND is able to take 

advantage of the coefficient’s accurate modelling of 

textured regions. 

It is also interesting to note that in the cases where 

Loo’s JND performs better than Chou’s JND the white 

embedding performs better than the PSC compliant 

embedding. This is due to the flatter host power 

distributions. 

 

 

 

Figure 15.  DWT (9/7 Linear phase filters) capacities for fixed 

embedding 

 

Figure 16.  DWT (debauchies 8) capacities for fixed embedding 

 

Figure 17.  DTWT capcities for fixed embedding strategies 

 

Figure 18.  NRCWT capacities for fixed embedding strategies 

For low details images like Peppers and Lena Chou’s 

JND is closer to the optimum embedding allocation.  This 

is due to the ability of Chou’s JND to more effectively 

isolate edges in the images.  However for higher detail 

images like Baboon and Barbara Loo’s JND is closer to 

the optimal allocation.  This is due to the weakness of 

Chou’s JND when it comes to modelling textures, while 

due to being based on the wavelet coefficients, Loo’s 

JND is able to take advantage of the coefficient’s 

accurate modelling of textured regions.   

It is also interesting to note that in the cases where 

Loo’s JND performs better than Chou’s JND the white 

embedding performs better than the PSC compliant 

embedding.  This is due to the flatter host power 

distributions. 

V.  EXPERIMENTAL RESULTS 

Empirical bit error rates are given for a variety of  

different attacks and embedding scenarios.   

Wiener filtering closely approximates the optimum 

attack distortion allocation and the results are as 

suggested by the capacity analysis with the NRCWT, 

DTWT and the DWT producing the best through worst 

results respectively.   

Median filtering is less optimal as an attack but 

produces a comparatively larger distortion than Wiener 

filtering.  The order of performance remains the same as 

the Wiener filtering case for all but the highest levels of 

distortion obtained when using the largest window size. 

JOURNAL OF MULTIMEDIA, VOL. 5, NO. 5, OCTOBER 2010 453

© 2010 ACADEMY PUBLISHER



Mean filtering introduces the most severe distortion of 

the three low-pass filtering attacks introducing an 

unacceptable level of visual distortion even with the 

smallest window size.  The NRCWT continues to 

produce the best results in the majority of cases. 

 

 

 

Figure 19.  BERs for Wiener filtering attack applied for 512 bits 

embedded in 512x512 test images 

 

Figure 20.  BERs for Median filtering attack applied for 512 bits 

embedded in 512x512 test images 

      

     The next attack considered is JPEG compression.  

Results are shown in figure 21.  As JPEG compression is 

a weaker attack due to the perceptual shaping of the 

distortion, a longer watermark of length 1024 bits is used 

in the simulations for better clarity of results.  The 

NRCWT again performs better than its counterparts; 

however the DWT in some cases performs better than the 

DTWT.  This can be attributed to complications arising 

from the redundancy of the DTWT. 

     Results for AWGN attacks are shown in figure 22 for 

a watermark of length 1024 bits.  The trend of the 

previous results is reversed in this case as the NRCWT 

produces the worst results with the DWT producing only 

slightly worse results than the DTWT.   

     The properties of the NRCWT that make it better at 

representing image features also causes the applied 

AWGN to create a bigger distortion in the NRCWT’s 

wavelet coefficients.  By contrast this effect is lessened in 

the DTWT and the DWT coefficients leading to better 

BER.  While this would seem to contradict the capacity 

results obtained it should be noted that AWGN is a 

strongly sub-optimal attack as no scaling is applied.  Due 

to the absence of scaling the greater magnitude of the 

NRCWT coefficients ceases to be an advantage.  The 

DTWT produces slightly better results than the DWT in 

this case because of its superior ability to adapt to the 

image particularly at the higher frequency levels, this can 

be seen in the greater gap in performance for the highly 

textured Baboon image. 

     The distortion required for the AWGN attack to 

significantly decrease the performance is so large that it is 

unlikely an attacker would ever be able to apply such an 

attack without violating perceptual constraints.  Low-pass 

filtering and JPEG compression are much more efficient 

means of attacking the embedded watermark as they 

simulate the scaling element of an optimal SAWGN 

attack, decreasing the performance of the watermarking 

system with a relatively much lower amount of distortion. 

     Results shown in figure 23 illustrate the effect of 

increasing the length of the watermark.  As watermark 

length increases the size of the spreading vector and so 

the BER will increase as a result of the consequent 

lowering of the effective WNR with the probability of 

error almost disappearing completely when embedding 

only 512 bits. 

     For comparison with other watermarking algorithms 

the proposed system is also compared to spread transform 

complex wavelet algorithm proposed by Loo [9] and the 

spread spectrum DCT algorithm proposed by Bastug et 

al. [1].  Results are given for embedding in a 256x256 

Lena image with 128 and 256 bits being embedded 

respectively.  As can be seen from figures 24&25 the 

proposed algorithm performs well compared to others in 

the literature. 

     Also given are the ST algorithm’s performance against 

scaling and cropping attacks in figures 26&27 

respectively.  The NRCWT continues to show the best 

performance when scaling is applied however all 

transforms show poor performance against the cropping 

attack.  This is due to the multi-sample quantisation 

involved in spread transform watermarking and can be 

easily remedied through the use of simple repetition 

encoding. 

 

 

Figure 21.  BERs for Mean filtering attack applied for 512 bits 

embedded in 512x512 test images 
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Figure 22.  BERs for JPEG compression attack applied for 1024 bits 

embedded in 512x512 test images 

 

 

 

 

Figure 23.  BERs for JPEG compression attack applied for 1024 bits 

embedded in 512x512 test images 

 

 

 

 

 

Figure 24.  BERs for JPEG compression attack applied for 256 bits 

embedded in 256x256 Lena image 

 

 

 

 

 

Figure 25.  BERs for JPEG compression attack applied for 256 bits 

embedded in 256x256 Lena image 

 

 

 

 

Figure 26.  BERs for JPEG compression attack applied for 256 bits 

embedded in 256x256 Lena image 

 

 

 

 

 

Figure 27.  BERs for scaling factor attack applied for 512 bits embedded 

in 512x512 Lena image 
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Figure 28.  BERs for cropping % attack applied for 512 bits embedded 

in 512x512 images 

VI.  CONCLUSION 

    Then, two main methods of deriving a JND profile for 

the detailed wavelet transforms were presented.  Chou’s 

method offers the possibility of a universal JND model 

that can be applied to any watermarking scenario 

regardless of the transform being used.  It is also very 

good at adapting watermark to signals to fine image 

features.  However it shows weakness with regards to 

modelling complex textures within images.   

     Loo’s model compensates for this by taking advantage 

of the excellent texture representation provided by 

wavelet transforms.  However exhaustive visual tests 

must be conducted for each wavelet transform used.  In 

addition Loo’s model can lead to a spreading of the 

watermark signal around fine image features such as 

edges.  In order to combine the advantages of both, a 

hybrid model is proposed and used. 

     By applying the principles of spread transform 

embedding the benefits of both quantization and spread 

spectrum are combined in the proposed system.  This 

chapter has demonstrated both theoretically and 

empirically the improved levels of performance offered 

by the DTWT and NRCWT combined with the high 

capacities offered by spread transform embedding.  This 

is due to the higher power channels offered by the 

NRCWT and DTWT due to their superior ability to 

represent the features of the host image.  Further, the 

analysis clearly shows the areas of the image such as 

textured and low frequency components, into which 

watermarks should be embedded to maximise the 

capacity. 

    Further, the case of non-iid data was considered as well 

as the application of fixed embedding strategies to the 

theoretical analysis.  This analysis shows the validity of 

combining both Chou and Loo’s JND models to create a 

balance between adaptability in both simple and complex 

images. 

     Experimental results back up these findings and the 

obtained capacity results, taking into consideration 

several common attacks such as low-pass filtering, JPEG 

compression and Gaussian noise. 
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