
Northumbria Research Link

Citation: Aljawarneh, Shadi, Laing, Christopher and Vickers, Paul (2007) Security policy
framework and algorithms for web server content protection. In: ACSF 2007. Liverpool
John Moores University. ISBN 978-1902560175

Published by: Liverpool John Moores University

URL:

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/917/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Security policy framework and algorithms for web
server content protection

Shadi Aljawarneh
School of Computing, Engineering

and Information Sciences
Northumbria University

Newcastle upon Tyne, NE2 1XE, UK
Email: shadi.aljawarneh@unn.ac.uk

Christopher Laing
School of Computing, Engineering

and Information Sciences
Northumbria University

Newcastle upon Tyne, NE2 1XE, UK
Email: christopher.laing@unn.ac.uk

Paul Vickers
School of Computing, Engineering

and Information Sciences
Northumbria University

Newcastle upon Tyne, NE2 1XE, UK
Email: paul.vickers@unn.ac.uk

Abstract— A significant web security issue facing Internet users
and organizations is the securing of web content against unau-
thorised tampering. Users must be comfortable with the security
offered by web applications that sensitive web-based services.
Some progress has been made in addressing the verification of
web server content integrity, but current solutions are restricted
by the limitations of the SSL protocol, the statelessness of HTTP,
blind security mechanisms which is based on ad-hoc models,
and difficulties with automatic code analysis. We present a web
security real-time framework, a state protocol of web policies,
and a number of particular algorithms that they can used to
verify and protect the static and dynamic web content against
unauthorised tampering. It is suggested that such a framework
will offer a higher level of user confidence, and web service
survivability.

I. INTRODUCTION

A web security is still in abysmal state, where organizations
that rely on information systems as the primary way to conduct
sensitive transactions are being increasingly worried about
their reputations when a web-based system is subverted [5],
[12], [14]. The Computer Emergency Response Team (CERT)
[3] has reported that there has been a dramatic increase (5990
in 2005 to over 8000 in 2006) in the number of security
vulnerabilities which threaten web content. Furthermore, a
study carried out by the Gartner Group has found that 75% of
Internet assaults are targeted at the web applications level [2].

Static and dynamic web server content can be tampered
with by changing (i) the style classes, (ii) referenced objects
(images, audio, video, and other objects), (iii) the source code
of the web page itself, and also by (iv) running malicious code
on the server to intercept a requested page before the client
receives it [5], [6], [10], [11], [14], [15]. Consequently, the
integrity of web content can be violated on the server even
though the communication channel between the server and
client is secure.

Current research is generally more concerned with cryp-
tographic rules, than with a security analysis of the system.
In an attempt to remedy this, we focus on the integrity of
data and do not delve into the confidentiality, and availability
of data. We do not target authorization schemes and Access
Control List (ACL), however, if the integrity of data is
violated, the confidentiality and availability of data can be

compromised. It should be noted that data integrity refers to
the trustworthiness of information resources, thereby ensuring
that only an authorized client can alter the data – unauthorized
tampering may result in incorrect or malicious web application
behaviour [5], [6], [14], [15].

The Secure Sockets Layer (SSL) protocol was developed to
support the integrity of data transit [5], [6], [14], [15], and as
such, it does not provide an absolute solution. Furthermore,
several security tools are not capable of verifying the integrity
of web content before a request or response enters the secure
communication channel [14], [15]. This means they cannot
distinguish between the original HTTP (Hyper Text Transfer
Protocol) conversation, and the tampered-with HTTP conver-
sation [5]. Therefore, there is no one-stop-shop protection
method that can meet all the security requirements and design
specifications of new or exiting web applications. As a result
of the transparency of code at the web browser level, the
following approaches can cause loss of data integrity: hidden
fields and script manipulation, and analysis of validation code
through reverse engineering techniques [10], [13], [14].

The HTTP Request-Response model can fail because web
servers and browsers do not properly manage the statelessness
of HTTP, in which each client request results in a new
connection between a web browser and a web server [5], [6],
[14]. Furthermore, because of the difficulty of code analysis,
Jacobs and Malloy [7] suggest that software engineering
principles (such as design, implementation and testing) should
be integrated into web security to identify what a user and an
organization need for every stage of this cycle - this can detect
the vulnerabilities at each stage instead of processing them
at the implementation stage. However, this integration may
require the rebuilding of existing web applications - some web
applications may be complex structures, consisting of multiple
programming languages and imported binary components with
little or no documentation.

This paper is organized as follows: Section 2 gives an
overview of the existing approaches. Section 3 outlines a
proposed integrity verification system. Section 4 discusses
some issues related with security and performance. Finally,
Section 5 draws conclusions and discusses possible future
work.

II. INTEGRITY VERIFICATION APPROACHES

We now discuss three more recent approaches that attempt
to address one or more of these problems. First, Hassinen
and Mussalo [6] propose a client-side encryption system to
protect data integrity and user trust. The client encryption key
is located on a client smart card or can be stored on the server
and transferred over an HTTP connection. This system has two
main requirements [6]: (i) it must be able to run on any major
web browser, and (ii) without the need to install additional
hardware or software.

However, integrity of data could be lost if this approach
is adopted because Java applets can access the client’s local
file system. Thus, a criminal can replace the original signed
applet with a faked applet to access the client’s web content.
Another potential weakness is the loss of the client smart card
with its Personal Identification Number (PIN). Consequently,
the whole web-based system can be compromised. Moreover,if
a smart card is used, then the client machine requires a
card reader and necessary drivers, which fails requirement
(ii); no need to install additional hardware or software. Fur-
thermore, applet and JavaScript methods can be bypassed.
If this happens, the submitted values will be in plain text.
Finally, existing web applications would require modification
to implement this technique.

Sedaghat, Pieprzyk, and Vossough [14], [15] proposed a
Dynamic Security Surveillance Agent (DSSA) tool on the
server that automatically intercepts a request to verify the
integrity of the requested page before the web server responds
to the client. The verification uses the timestamp signature
technique. However, tampering is still a potential problem
because DSSA does not verify dynamic web content on the
server.

Third, the Adaptive Intrusion-Tolerant Server system [16]
consists of redundant servers, proxies that are positioned
between web servers and client machines to verify the be-
haviour of servers. When a client request arrives a proxy
leader intercepts the request, analyzes it, and forwards it to
a number of application servers, depending on the enforced
policy. Furthermore, a leader intercepts the responses to find
a hash value for them. If they match, the leader sends a
response to the user, otherwise, a report is sent to a monitoring
component to take the correct action. However, it does not
verify the integrity of referenced objects that are generated
dynamically.

III. WEB CONTENT VERIFICATION (WCV) SYSTEM

The integrity of web content can be compromised even
though some security problems are discovered on web
browsers and servers, while important security policies have
yet to be answered in a systematic way. We are developing a
server web content verification system to identify tampering.
The WCV system comprises a number of components includ-
ing mathematical models and a web security framework that
enforces a set of web policies. We have two assumptions: First,
SSL only secures the data in transit [5], [6], [14], [15]. SSL
provides digital certificates to encrypt the data in transit against

malicious coding and eavesdropping attacks. Second, the data
resulting from user interaction on the client is untrustworthy.
User input may contain malicious code that harms a web server
or a backend database [13]. Furthermore, the client validation
scheme can be violated. As result, all user data that is sent
as a request to a server is untrustworthy. Therefore, we also
assume a validation scheme operates on both sides (client and
server) to validate the inputs of a request before it is processed
on the web server. This means if the client validation scheme
is subverted, there is still another validation scheme running
on the server before processing a request.

A. Modelling Interaction Elements
We have formulated two separate mathematical models that

aim to understand how to dynamically produce units of web
content as shown in the prior work [1]. Moreover, another
important aim is to simplify a method of analysis of a web
site that contains a large number of elements and each web
page can include a large number of interaction elements (i.e.
HTML and non-HTML objects).

First, because the Bypass Test Strategy1 [10] only deals with
HTML inputs, we have formulated the new Client Interaction
Elements (CIE) model, which extends Offut et al.’s HTML
Input Units (IU) model [10],to deal with every interaction
element (both HTML and non-HTML objects) in a web page.
CIE has the following features: (i) formulating all the inter-
action elements (not just HTML input elements) (ii) adding
other parameters to each interaction element to account for
the user and data information required in sensitive web-based
services such as banking, accounting, ticket reservations, etc.
(iii) building a truth table to test our model, and (iv) a set of
four usage patterns that are used to analyse and test the model.

Web applications contain static web files and programs that
dynamically generate HTML/XHTML pages [10], [11], [14].
Each web page, whether a static web file or dynamically
generated, can have zero or more interaction elements that
make users interact with a web server via a web browser.
An interaction element I is characterized by five parameters:
I = (IT, SP,D, T, U). IT is the type of interaction element
that can be used for interacting with a web server. The data
inputs D are sent to a server page SP for processing user
requests. D is a set of ordered parameter-value pairs (pi, vi),
where pi is a parameter name, and vi is the value of a data item
(e.g. text box, selection list, etc) that can be assigned to pi. T
is the HTTP transfer mode (viz. GET, POST, DELETE, PUT,
and HEAD). U is a user who interacts via a web browser to
conduct HTTP conversations. A user U can legitimately access
web content on designated directories of a web server through
secure authentication and authorization schemes.

(1) I = (IT, SP, D, T, U), D = {(pj , vj | j = 0 . . . n)}

(2) P =

{
xi if 0 < x ≤ 1,

0 if x = 0.
, where xi =

ni

N

1It aims to create tests on the client for web applications that violate checks
on user inputs.

Equation (1) is used to simplify the analysis of a web
page through extracting the parameter values of the interaction
elements in the target web page by the integrity verifier
component of the proposed framework (see Figure 1) before
processing a request. P in Equation (2) is the probability
of generated units of web content through interacting with
interaction element I in a web page, where ni is the number
of interactions of a single user with I during a fixed period
of time t, and N is the number of interactions all users with
I during the same t. If the interaction element exists on a
web page, the number of possible units of web content can be
generated depending on user inputs. The second case (P =
0, x = 0) means a static web page that does not contain any
interaction elements or contains interaction elements without
user inputs. For example, it is possible to have a fully plain
text web page (e.g. one that contains a description of a place,
or an information brochure).

The CIE model is analyzed and tested through building
a truth table as shown of five input parameters: IT , SP ,
D, T , and U and is based on five usage patterns as shown
in the pervious work [1] to represent dynamic web content.
According to 5-parameter Karnaugh map [8] to identify the
simplest set of inputs required to match rows, the simplified
result is:

(3) F (IT, SP, D, T, U) = (IT) ∩ (SP) ∩ (T)

F is a function of the 5 input parameters. As such,
generation of dynamic web content units require interaction
elements to have three parameters: IT , SP , and T (see
Boolean Equation 3). Therefore, since we focus on integrity of
data and are not concerned whether the user U is authorized
(or not), and sent data D is validated (or not), we are only
interested in extracting the values of IT , SP , and T .

Second, we formulate a model of web site elements from
which we develop the new hashing scheme and the registration
technique of web site elements through the derivation of
mathematical equations (see Equations 4, 5, 6) that simplify
the analysis of target web site elements. This model is based
on a set of assumptions and specifications as shown in the
previous work [1]. The notation key of the following equations
is:WS denote a target web site, WP be a web page, O be
a referenced object and let C denote the source code of a
WP, ∀C ∈ WPi , where i is the index of WP in web pages
(n), m is the number of referenced objects in WS, and Hash
is the hash function.

WS = {WP0,WP1, . . . ,WPn} : 0 ≤ i ≤ n(4)
WPi = {(O0, Ci), . . . , (Ol, Ci)}(5)
WS = {WPji | j = 0 . . .m, | i = 0 . . . n}(6)

= {(Oj , Ci) | j = 0 . . .m, | i = 0 . . . n}

From the transitive property of equality we get:

Hash(Oi ∈WP1) = Hash(Oi ∈WP2)
Hash(Oi ∈WP2) = Hash(Oi ∈WP3)

∴ Hash(Oi ∈WP1) = Hash(Oi ∈WP3)

Merkle [9] proposed a tree scheme of digital signatures [4]
- which provides a different message to be signed for each a
node in a tree. If two or more trees reference the same object
in a node, then the signature of that node will be different in
each tree. Therefore, our scheme is different from Merkle’s
in which shared referenced objects have the same signature
even though they belong to different web pages. This will
achieve balance between performance (minimising number of
calculated signatures of each referenced object in a web site)
and security.

B. Architecture of web security framework

The proposed WCV system will include a web security
framework (Figure 1). This framework consists of a number
of web-based components: web register, response hashing
calculator, integrity verifier, and recovery. The web register
component has two stages: monitoring and registration. The
integrity verifier (manager) component mediates between the
web server and client machines by managing the HTTP
requests and responses via a state protocol that enforces a
number of web policies that apply to the elements of a web-
based system. The web policy outlines who is responsible for
maintaining each component and when the policy is enforced.
The response hashing calculator component calculates the hash
value of each HTTP response on the web server before sending
the response to the integrity verifier for further processing.
Finally, the recovery component recovers the marked data,
which is stored if the action of the enforced web policy from
the integrity verifier is invalid. In addition, Figure 1 illustrates
how the proposed framework is separate from the web server.
Note that the components of the framework do not need to run
on a dedicated machine, they can be run as separate processes
on the server.

We classify the server page SP into two types: client-
scripting file, and server-scripting file. If the file contains
server- and client- scripting codes then type of file is server-
scripting file. The client-scripting file is possible to analyse
through the manager before sending the request to a web server
because this type is run on a web browser for rendering it,
therefore, the manager does not intercept the response of this
type. On the other hand, the manager intercepts the request
and response if the type of SP is server-scripting file because
this file is run on a web server, therefore, it is much easy to
analyse response of this file after processing the request on a
web server.

Our proposed system offers integrity of data, and a higher
level of trustworthiness to an organization and the user. We
believe that the proposed framework will be capable of ver-
ifying web pages and referenced objects on the designated
directories of the web server, and web content on the fly

Web server
Response
Hashing

Calculator

Web registerIntegrity
Verifier

Recovery
Component

Firewall

Client

Key
: All web site elements transferred

: Only applied when SP contains client script

: When tampering detected

Fig. 1. Schematic view of WCV architecture

against tampering. To ensure the survivability of web services,
we enable the WCV system to detect and protect web content
against tampering and recover the original copy of the compro-
mised object. We are using risk analyzer techniques to protect
user information on the web server if the web server has
been tampered with. The WCV system possesses a number of
properties: (i) it does not require modifications to existing web
application architectures, (ii) it does not require any additional
changes on the client and adopts minimal changes on a server,
and (iii) it can be run on all major web browsers.

C. Functional Overview

When a client request arrives, the following steps are
performed:

1) The integrity verifier (manager) intercepts the HTTP
request, checks it, analyses it, extracts the hash value
of original copy of server page SP code element from
the secure repository (all web site elements must be
registered before they are published over HTTP Request-
Response model), calculates the hash value of SP copy
which is stored on a the designated directories of a
web server, and compares the two hash values to verify
the integrity of static SP code element; if they match,
then the integrity of SP is valid; otherwise, the SP is
illegally tampered with. Similarly, if SP is a client-
scripting file, the manager extracts the original hash
value of referenced objects, calculates the hash value
of SP referenced objects, and compares the two hash
values; if they match, then the integrity of SP referenced
objects is valid. The manager forwards the request to a
web server if the current policy is valid. If not valid, the
manager forwards to recovery component to identify the
tampering problem.

2) The application server processes the request. The current
web policy, which is relied on the type of server page

SP , determines whether the response hashing calculator
component calculates the hash value of response or not.
The hash value of response is appended to the response
content if the current web policy is valid (i.e. the type
of SP is server-scripting file).

3) The response and in addition to the calculated hash
value are sent to the manager. The manager analyses a
response, extracts the original hash value of a response
(this value is appended into the response), recalculates
the hash value of response, and compare the two hash
values to verify the integrity of response; if they match,
then the integrity of response is valid; otherwise, the
response has been tampered with.

4) If the current policy is valid, the manager analyses the
response to verify the integrity for every referenced
object element which is linked in the response code
element. Otherwise, the manager forwards the response
to recovery component.

5) The manager forwards the correct response to the target
client if the web policy is valid.

6) The monitoring proxy if presents, monitors the transac-
tion to ensure correct manager behaviour.

D. Challenge Response Protocol

The integrity verifier (manager) component periodically
launches a challenge response protocol to check the server and
other framework components. This protocol introduces two
main purposes: (i) It provides integrity check for the liveness
and freshness of the servers. If the manager does not receive
a response within some delay2, it alerts the web-based system
elements. (ii) The protocol checks the integrity of web files
which are stored on the designated directories of a web server.
Further details are described in the next sections.

E. Challenge Request Protocol

The manager component provides integrity check for the
liveness and freshness of the servers at the request level. The
protocol checks the integrity of static server page SP which
is extracted from Equation (1) and generates the correct web
policy to take the next action. Further details are described in
the next sections.

F. Security Framework Components

1) Web Register Component: This component aims to reg-
ister web site elements before publishing them over HTTP
Request-Response model. Another aim is to monitor all web
site elements in their designated places for any authorised
change that occurs. This requires a new registration for every
element that legally is updated. The registration process can
take place when one condition of three is satisfied: when a
new element is published, when a published element is legally
changed, and when certificate of a published element is ex-
pired. However, some developers may not take into account the
certificate expiration of published elements because they rely

2Functionality of challenge response delay will be developed in the next
phase of this research.

on a web browser and operating system settings. Therefore,
criminal can replace an original element with another expired
original element to evade web content of a web server or client
machines [14], [15].

1: algorithm registeredCode(WSi ∈ WS, SK ∈
CharacterSet) return codeRecordset

2: C : Codeset/ ∗ C = {Ci | 0 ≤ i ≤ n}, Ci =
(ID,CV, Cs, Path)*/

3: ID : LongIntegerSet /* Identification number*/
4: CV : CharacterSet /* Code content value */
5: CS : CharacterSet /* Code signature*/
6: Path : CharacterSet /*Path of Page code on a web

server*/
7: C ← ∅
8: foreach WPi ∈WS do
9: CV ← extractCode(WPi)

10: /* extractCode() extracts the code of WPi*/
11: if (not Register(CV) or Changed(CV)) then
12: CS ← Sign(CV ,SK)
13: Path← extractPath(WPi)
14: Ci ← Ci ∪ (ID,CV, CS, Path)
15: end if
16: end for
17: DB ∈ DatabaseSet
18: /*To store the code details in Database*/
19: DB ←connectDatabase()
20: codeRecordset← ∅
21: foreach Ci ∈WS do
22: codeRecordset← codeRecordset ∪ Put(Ci)
23: end for
24: Output(codeRecordset)
25: end algorithm

Fig. 2. Registration stage of code element

The proposed registration technique which is based on
Equations (4, 5, 6) provides the calculation property of the
hash value for every site element and stores their values
on a secure repository (such as secure database). Note, this
repository might be logically or physically independent of
main server. Furthermore, this technique uses the proposed
hashing scheme which is based on the Equations (4, 5, 6) in
which the shared referenced objects have the same signature
even they belong to different web pages [1]. The process of
this registration technique passes into two stages: registration
process of page code element and registration process of
referenced objects elements. First, the registration process of
page code: It is important to register the page code at any
change that occurs. This change can take place either on the
view content, or the structure of a web page, or both. As
a result, this can cause to change the presentation of a web
page. We develop an algorithm (see Figure 2) that describes
the functions and the steps to register a page code. Note, this
algorithm can be applied for any page code regardless type of
client- or server-scripting language, and size of page code. It
consists of four sections: the first section (line 1) presents the

inputs of this algorithm: the target web site WS and secret
key SK which is used to calculate the hash value of page
code and relied on the size of page code and the time factor
which specifies the expiry of a secret key to identify this kind
of tampering attack. The second section (Lines 2-7) assumes
a set of codes C and their elements, where C is derived from
Equation (5) that shows a web page is a set of referenced
objects and the page code itself. The third section (Lines 8-
16) includes two basic functions: extractCode() function is to
extract the page code, and Sign()function is to extract the hash
value for every element in codes C set. Finally, the fourth
section (lines 17- 24) outputs codeRecordset and stores in
secure database DB set.

Similarly, the second stage of registration process calculates
the hash value for every referenced object in the target web
site WS. We have developed an algorithm for registering the
referenced objects of a target web page but it is not shown in
this paper because it is similar to registration of page code
element algorithm. The hashing functionality of referenced
objects will be described in the next phase of this research.

Accept
Request

Forward

Request to

Web Server

Identify
Suspicious

Dynamic Web
Content

Send

Response to

Client

Element
Recovery

Identify
Suspicious
Static Web
Content

Forward
Response to
Manager

Calculate

Hash Value for

Response

Valid
ValidStart Valid

ValidValid
Valid

Tampering Identified

Tampering Identified

Valid

Va
lid

Invalid Request

Fig. 3. The finite automata of state protocol

2) Integrity Verifier Component: The integrity verifier com-
ponent (manager) is positioned between the client machines
and target web server. This component manages the HTTP
requests and responses via a state protocol that enforces a
number of web policies that apply to the elements of a web-
based system. The web policy specifies the action to take next
whether the request or response is valid or not, and when
the policy is enforced. This component generates dynamically
a collection of enforced web policies that include registry
checking policy, monitoring policy, integrity of request policy,
integrity of response policy, and integrity of referenced objects
policy, recovery policy, risk policy, and report policy. Figure
3 shows the finite automata of the state protocol that contains
a number of steps to generate the enforced web policies.
The manager comprises a number of the following stages to
enforce the correct web policy.

Stage 1, this stage aims to produce checking policy that
implies whether the server page copy SP is found or not in

the designated directories of a web server. Function extrac-
tRequestedPage() in Figure 4 illustrates how to extract SP ,
which it represents the path of requested page on the web
server, through Equation (1) before processing a request on a
web server as shown in lines 4-6, and the path of SP assigns
to requestedPath variable(see lines 6-7).

1: Input(Ij ∈ I)/*I is the interaction element*/
2: function extractRequestedPath(Input) return

requestedPath
3: requestedPath ∈ CharacterSet
4: Ij ← (IT, SP,D, T, U)
5: requestedPath← Ij(SP)
6: Output(requtestedPath)
7: end function

Fig. 4. Extraction of SP Path

The second task of this stage is to check whether SP is
found or not on a web server as shown in Figure 5. This
function returns the value of current policy (registry checking
policy) that should be enforced to take next action.

Second 2, this stage includes three tasks. The first task
is to calculate the hash value of SP code which placed on
designated directories of a web server. The second task of
this stage is to extract the original hash value of SP from
the secure repository (Database Set). The third task is to
enforce the integrity of request policy. The following function
in Figure 6 illustrates a comparison between two elements,
original hash value of a page code element (originalHV)
which is retrieved from Database set, and the hash value of
page code (requestedHV) which is placed on web server
directories. Lines 4-8 in Figure 6 specify the comparison
operation to return the correct current web policy. Therefore if
the matching is true, then the static page code on a web server
is free from any tampering problems. Otherwise, the static
page code includes tampering problem and then a request is
sent to recovery component.

Stage 3 is conduced if the current policy is valid. It aims
to protect a backend database on a server through building
risk analyser algorithm (see Figure 7) through generating
risk policy. This policy applies on the server-scripting file
because this file contains the commands of database. The
following function in Figure 7 shows how to insert a risk
through highlighting the interesting data (SQL deleting and
updating operations) and backup them in secure repository.
This stage requires minimal change on a request details for
further security. Line 8 in Figure 7 returns the correct current
policy.

3) Response Hashing Calculator: Response hashing calcu-
lator is invoked when finishing the process of response on
a web server. The purpose is to calculate the hash value of
response before sending it back to the manager. The risk
policy determines whether the response hashing calculator
component calculates the hash value of current response or not.
This hash value is added to the current response. Therefore,
the manager intercepts the current response, extracts the hash

1: Input(requestedPath ∈ CharacterSet)
2: function extractCheckingPolicy(Input) return

checkingPolicy
3: checkingPolicy ∈ CharacterSet
4: foreach WPi ∈WS do
5: if (requestedPath ∈WPi) then
6: checkingPolicy ← “V alid”
7: Exit Loop
8: else
9: checkingPolicy ← “Invalid”

10: end if
11: end for
12: Output(checkingPolicy)
13: end function

Fig. 5. Extraction of checking policy

1: Input(requestedHV ∈ CharacterSet,originalHV ∈
CharacterSet)

2: function matchHV(Input) return
integrityRequestPolicy

3: integrityRequestPolicy ∈ CharacterSet
4: if (requestedHV

.= originalHV) then
5: integrityRequestPolicy ← “V alid”
6: else
7: integrityRequestPolicy ← “Invalid”
8: end if
9: Output(integrityRequestPolicy)

10: end function

Fig. 6. Generating request policy

value of response (originalHV), recalculates the hash value
of this response (responseHV), and compares between two
the two of hash values to verify the integrity of response
code element (see Figure 8). Lines 4-8 specify the comparison
statements to return the correct web policy. Therefore if the
matching is true, then the dynamic web content of response
code on a web server is free from any tampering problems.
Otherwise, the dynamic web content includes tampering prob-
lem and then a request of user sends to recovery component
for tampering problem. Finally, we develop another algorithm
(it is similar to algorithm in Figure 8) for a comparison
between two elements, the hash value of referenced objects
and the original hash value of referenced objects. Therefore,
if the generated policy is invalid, the server page SP sends
to recovery component. Otherwise, the response sends to the
correct client.

IV. DISCUSSIONS

There is always a tradeoff between the security and perfor-
mance. In this paper, we are concerned more in the security
design of our proposed system to ensure the survivability
of web services than performance issues. We focus on the
integrity check on the original element to detect malicious
codes added in an unauthorised manner. The WCV system can

1: Input(requestedPage ∈ CharacterSet)
2: function insertBackup(Input) return riskPolicy
3: riskPolicy ∈ CharacterSet
4: foreach SQLCommand ∈ requestedPage do
5: requestedPage← insertSQLCommand()
6: end for
7: riskPolicy ← “V alid”
8: Output(riskPolicy)
9: end function

Fig. 7. Building risk analysis model

1: Input(responseHV ∈ CharacterSet,originalHV ∈
CharacterSet)

2: function matchResponseHV(Input) return
integrityResponsePolicy

3: integrityResponsePolicy ∈ CharacterSet
4: if (responseHV

.= originalHV) then
5: integrityResponsePolicy ← “V alid”
6: else
7: integrityResponsePolicy ← “Invalid”
8: end if
9: Output(integrityResponsePolicy)

10: end function

Fig. 8. Generating response policy

detect and protect the page code and every referenced object on
the designated directories of web server and on the fly against
tampering problems. This causes problems for attackers who
target the referenced objects and page code - for example, it
is possible to replace any original image by another image
that contains a malicious code where, a victim requests the
altered image and then it can destroy a web server or client
machine. Another example, the Cascade Style sheet (CSS)
object might be threatened through visualization spoofing
attack. The strategy of this attack is to change illegally any
important information that is shaded by a particular colour to
another colour . This can trick the users of a web page to
take a decision that can be different if the shaded text was the
correct colour. Therefore the visualization spoofing attack can
be a risk to the appearance of a web page - the WCV system
is capable of protecting web server content and preventing
various tampering attacks.

Unlike Merkle’s scheme [9], we propose a new hashing
scheme in which the shared referenced objects have the same
signature even though they belong to different web pages. This
achieves balance between performance (minimising number
of calculated signatures of each referenced object in a web
site) and security. Further details are described in [15]. The
worst case latency of the WCV system occurs when the
manager intercepts the request and response and SP contains
SQL commands. This performance issue increases if the SP
is client-scripting file. However, the performance can also
decrease because we adopt static analysis concept in a number
of developed algorithms to produce the correct web policy.

In future work, we intend to emphasize performance of our
system.

V. CONCLUSION

Because of the statelessness of HTTP and the limitations
of SSL, data integrity can be violated on the server even
though the communication channel between the server and
client is secure. We present the proposed WCV system which
includes a web security real-time framework, work assump-
tions, conceptual models, and a state protocol of a set of
enforced web polices. This framework consists of a number
of web-based components: web register, response hashing
calculator, integrity verifier, and recovery. Furthermore, we
propose a registration technique of codes and referenced
objects elements, and new hashing scheme. In the next stage
of this research, we will develop the recovery component of
the proposed framework and will discuss how to calculate the
hash values of various referenced objects (e.g. audio, video,
and other objects)- it is suggested that this could be able verify
the static and dynamic web content of requested web pages.

ACKNOWLEDGMENT

The authors would like to thank Prof. Maia Angelova for
her suggestions in testing the proposed models.

REFERENCES

[1] S. Aljawarneh, C. Laing, P. Vickers, and M. Angelova. Formulating
models to protect web server content against tampering. In Submitted
to IAS ’07, Manchester, UK, 2007.

[2] T. Bass. CEP and SOA: An open event-driven architecture for
risk management. IT Financial Services ’07, Portugal, 2007.
www.idc.pt/resources/PPTs/2007/Financial Services/7 TI
BCO.pdf.

[3] CERT. CERT statistics 1988–2006. http://www.cert.org/stats, 2006.
[4] C. Coronado. On the security and the efficiency of the Merkle

signature scheme. Cryptology ePrint Archive, Report 2005/192, 2005.
http://eprint.iacr.org/.

[5] B. Gehling and D Stankard. eCommerce security. In Proceedings of In-
formation Security Curriculum Development (InfoSecCD) Conference
0́5, pages 32–37, Kennesaw, GA, USA, Sep 23–24 2005.

[6] M. Hassinen and P. Mussalo. Client controlled security for web
applications. In B. Wener, editor, The IEEE Conference on Local
Computer Networks 30th Anniversary, pages 810–816, Australia, 2005.
IEEE Computer Society Press.

[7] D.P. Jacobs and B.A Malloy. An application-centred course on data-
driven web sites. In Proceedings of Frontiers in Education 2001, pages
F2D–10–F2D–14, Reno, NV, Oct 10–13 2001.

[8] T.R. Kuphaldt. Lessons In Electric Circuits: Volume IV–Digital. Open
Book Project, http://www.ibiblio.org/obp/, 2006.

[9] R.C. Merkle. A certified digital signature. In CRYPTO ’89: Proceed-
ings on Advances in cryptology, pages 218–238, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

[10] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of web
applications. In ISSRE 2004 15th International Symposium on Software
Reliability Engineering, pages 187–197. IEEE Computer Society, Los
Alamitos, CA, 2004.

[11] C. Reis, J. Dunagan, H.J. Wang, O. Dubrovsky, and S. Esmair.
Browsershield: Vulnerability-driven filtering of dynamic HTML. In
Proceedings OSDI 06 7th USENIX Symposium on Operating Systems
Design and Implementation, pages 61–74. USENIX Association, Nov
6–8 2006.

[12] A.D. Rubin and D.E. Geer. A survey of web security. Computer,
31(9):3441, 1998.

[13] D. Scott and R. Sharp. Specifying and enforcing application-level web
security policies. IEEE. Knowl. Data Eng, 15(4):771–783, 2003.

[14] S. Sedaghat. Web authenticity. Master’s thesis, University of Western
Sydney, Australia, 2002.

[15] S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-fly web content
integrity check boosts users’ confidence. Commun. ACM, 45(11):33–
37, 2002.

[16] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy,
H. Saı̈di, V. Stavridou, and E. Uribe. An architecture for an adaptive
intrusion-tolerant server. In Bruce Christianson, James A. Malcolm,
and Michael Roe, editors, Security Protocols Workshop, volume 2845
of LNCS, pages 158–178. Springer Verlag, 2002.

