The knowns and unknowns of neural adaptations to resistance training

Skarabot, Jakob, Brownstein, Callum, Casolo, Andrea, Del Vecchio, Alessandro and Ansdell, Paul (2021) The knowns and unknowns of neural adaptations to resistance training. European Journal of Applied Physiology, 121 (3). pp. 675-685. ISSN 1439-6319

Text (Final published version)
Škarabot2021_Article_TheKnownsAndUnknownsOfNeuralAd.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Text (Advance online version)
Škarabot2020_Article_TheKnownsAndUnknownsOfNeuralAd.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
[img] Text
EJAP-D-20-00868_R1.pdf - Accepted Version
Restricted to Repository staff only until 23 December 2021.

Download (2MB) | Request a copy
Official URL:


The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.

Item Type: Article
Uncontrolled Keywords: descending tracts, high-density surface electromyography, motor cortex, motor neuron, strength, synaptic input, transcranial magnetic stimulation
Subjects: C600 Sports Science
Department: Faculties > Health and Life Sciences > Sport, Exercise and Rehabilitation
Depositing User: Elena Carlaw
Date Deposited: 23 Nov 2020 16:33
Last Modified: 31 Jul 2021 15:22

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics