Resilient tracking consensus over dynamic random graphs: A linear system approach

Shang, Yilun (2022) Resilient tracking consensus over dynamic random graphs: A linear system approach. European Journal of Applied Mathematics. pp. 1-16. ISSN 0956-7925 (In Press)

Text (Advance online version)
resilient-tracking-consensus-over-dynamic-random-graphs-a-linear-system-approach.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (488kB) | Preview
[img] Text
accepted version.pdf - Accepted Version
Restricted to Repository staff only until 12 January 2023.

Download (259kB) | Request a copy
Official URL:


Cooperative coordination in multi-agent systems has been a topic of interest in networked control theory in recent years. In contrast to cooperative agents, Byzantine agents in a network are capable to manipulate their data arbitrarily and send bad messages to neighbors, causing serious network security issues. This paper is concerned with resilient tracking consensus over a time-varying random directed graph, which consists of cooperative agents, Byzantine agents and a single leader. The objective of resilient tracking consensus is the convergence of cooperative agents to the leader in the presence of those deleterious Byzantine agents. We assume that the number and identity of the Byzantine agents are not known to cooperative agents, and the communication edges in the graph are dynamically randomly evolving. Based upon linear system analysis and a martingale convergence theorem, we design a linear discrete-time protocol to ensure tracking consensus almost surely in a purely distributed manner. Some numerical examples are provided to verify our theoretical results.

Item Type: Article
Subjects: G100 Mathematics
Department: Faculties > Engineering and Environment > Computer and Information Sciences
Depositing User: Elena Carlaw
Date Deposited: 22 Jun 2022 11:23
Last Modified: 25 Jul 2022 14:36

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics