Educated search-A generic platform for partial modification at conceptual design phase of multidisciplinary problems

Maheri, Alireza and Isikveren, Askin (2013) Educated search-A generic platform for partial modification at conceptual design phase of multidisciplinary problems. Computer-Aided Design, 45 (6). pp. 991-1004. ISSN 0010-4485

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1016/j.cad.2013.02.001

Abstract

This paper presents a goal programming algorithm utilising a weight-free aggregate function for producing enhanced design alternatives and a knowledge-based procedure for the selection of the final solution from a pool of enhanced alternatives. Normally, in a multi-disciplinary design problem several teams of designers with different preference and background knowledge are involved in the decision making processes, such as constructing aggregate functions for multi-objective optimisation and trade-off study towards selecting the final solution. In constructing an aggregate function, designers need to identify how important each objective is with respect to the other objectives. However, in the absence of a final decision maker with expertise in all disciplines, the predicates such as “as important as” or “more important than” cannot be used to compare objectives from different disciplines, and therefore the establishment of a weighted aggregate function is not viable. Introducing the concepts of unsatisfactoriness and tolerated margin, “how important is a design quality with respect to other design qualities” is replaced with “to what extent can the unsatisfactoriness of a design quality be tolerated”. This removes the predicament arising from the usual subjective decision making when forming an aggregate function and also transforms the final solution selection from a negotiation process to a straightforward and knowledge based procedure. A software tool comprising of two modules, a multi-deme genetic algorithm, for producing enhanced alternatives, and an assessment module, which includes visualisation, ranking and filtering facilities, is developed and its performance is shown using an illustrative multi-disciplinary design space.

Item Type: Article
Uncontrolled Keywords: design modification, design decision support system, multi-deme genetic algorithm
Subjects: H300 Mechanical Engineering
H400 Aerospace Engineering
H700 Production and Manufacturing Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Ay Okpokam
Date Deposited: 23 Sep 2013 08:54
Last Modified: 13 Oct 2019 00:33
URI: http://nrl.northumbria.ac.uk/id/eprint/13569

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics