Thurgood, Jonathan and McLaughlin, James (2013) Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force. Astronomy & Astrophysics, 555. A86. ISSN 0004-6361
|
PDF
TM2013c_aa21338-13.pdf - Published Version Download (3MB) | Preview |
Abstract
Context: In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime.
Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD.
Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code.
Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇c_A ≠ 0) there is no further nonlinear generation of fast waves.
Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | magnetohydrodynamics (MHD), waves, Sun: corona, Sun: oscillations, Sun: magnetic topology, magnetic fields |
Subjects: | F300 Physics F500 Astronomy F800 Physical and Terrestrial Geographical and Environmental Sciences G100 Mathematics |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Related URLs: | |
Depositing User: | Prof James McLaughlin |
Date Deposited: | 04 Oct 2013 07:52 |
Last Modified: | 17 Dec 2023 14:36 |
URI: | https://nrl.northumbria.ac.uk/id/eprint/13789 |
Downloads
Downloads per month over past year