Establishing the flightpath of a quadcopter drone from the relative angular velocity of the four rotors

Harrington, Peter, Chen, Tianrong and Ng, Wai Pang (2018) Establishing the flightpath of a quadcopter drone from the relative angular velocity of the four rotors. In: CSNDSP 2018: 11th International Symposium on Communication Systems, Networks & Digital Signal Processing, 18th - 20th July 2018, Budapest, Hungary.

Full text not available from this repository.
Official URL:


The flightpath of a quadcopter drone can be determined and controlled by GPS or waypoint methods. These methods however, require additional specialist components and equipment, and in the case of GPS, outdoor flights. This paper proposes a unique method, utilising the relative angular velocity of the four rotors to determine the drone flightpath, thus eliminating the shortcomings of GPS techniques, and the requirement of any additional components or equipment.The differences in the angular velocity of the four rotors of a quadcopter drone creates torque, causing the drone to pitch, roll, or yaw in the appropriate direction. The torque is thus proportional to the angle of pitch, roll or yaw generated and the resulting drone movement. A torque equation incorporating the three torque components of pitch, roll and yaw, utilising the relative angular velocities of the four rotors has been developed. The resulting torque/time graph, for a prescribed flight, shows the mutual interaction of the three torque components. Analysis of the three torque components in the torque/time graph enables the movement and the flightpath of the drone to be identified.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Rotors, Drones, Torque, Pulse width modulation, Angular velocity, Global Positioning System, Mathematics
Subjects: H300 Mechanical Engineering
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Ellen Cole
Date Deposited: 07 Aug 2019 15:07
Last Modified: 10 Oct 2019 16:15

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics