Wan, Yuzhuang, Zhong, Yi, Huang, Yan, Han, Yi, Cui, Yongqiang, Yang, Qi, Li, Zhuo, Yuan, Zhenhui and Li, Qing (2022) ARSD: An Adaptive Region Selection Object Detection Framework for UAV Images. Drones, 6 (9). p. 228. ISSN 2504-446X
|
Text
England_final_draft_to_editors_03.04.2022.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (286kB) | Preview |
Abstract
Due to the rapid development of deep learning, the performance of object detection has greatly improved. However, object detection in high-resolution Unmanned Aerial Vehicles images remains a challenging problem for three main reasons: (1) the objects in aerial images have different scales and are usually small; (2) the images are high-resolution but state-of-the-art object detection networks are of a fixed size; (3) the objects are not evenly distributed in aerial images. To this end, we propose a two-stage Adaptive Region Selection Detection framework in this paper. An Overall Region Detection Network is first applied to coarsely localize the object. A fixed points density-based targets clustering algorithm and an adaptive selection algorithm are then designed to select object-dense sub-regions. The object-dense sub-regions are sent to a Key Regions Detection Network where results are fused with the results at the first stage. Extensive experiments and comprehensive evaluations on the VisDrone2021-DET benchmark datasets demonstrate the effectiveness and adaptiveness of the proposed framework. Experimental results show that the proposed framework outperforms, in terms of mean average precision (mAP), the existing baseline methods by 2.1% without additional time consumption.
Item Type: | Article |
---|---|
Additional Information: | Funding information: This work was supported by a grant from the National Natural Science Foundation of China (Grant No. 61801341). This work was also supported by the Research Project of Wuhan University of Technology Chongqing Research Institute (No. YF2021‐06). |
Uncontrolled Keywords: | UAV, object detection, deep learning, adaptive cluster |
Subjects: | G400 Computer Science |
Department: | Faculties > Engineering and Environment > Computer and Information Sciences |
Depositing User: | John Coen |
Date Deposited: | 05 Sep 2022 11:41 |
Last Modified: | 16 Dec 2022 12:28 |
URI: | https://nrl.northumbria.ac.uk/id/eprint/50022 |
Downloads
Downloads per month over past year