Vo, Thuc, Thai, Huu-Tai and Aydogdu, Metin (2017) Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory. Composite Structures, 178. pp. 406-414. ISSN 0263-8223
|
Text (Full text)
Vo et al - Free vibration of axially loaded composite beams AAM.pdf - Accepted Version Download (376kB) | Preview |
Abstract
This paper presents free vibration of composite beams under axial load using a four-unknown shear and normal deformation theory. The constitutive equation is reduced from the 3D stress-strain relations of orthotropic lamina. The governing differential equations of motion are derived using the Hamilton’s principle. A two-node C1 beam element is developed by using a mixed interpolation with linear and Hermite-cubic polynomials for unknown variables. Numerical results are computed and compared with those available in the literature and commercial finite element software (ANSYS and ABAQUS). The comparison study illustrates the effects of normal strain, lay-ups and Poisson’s ratio on the natural frequencies and load-frequency curves of composite beams.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Composite beams, Normal strain, Poisson effect, Shear and normal deformation theory |
Subjects: | H100 General Engineering |
Department: | Faculties > Engineering and Environment > Mechanical and Construction Engineering |
Depositing User: | Becky Skoyles |
Date Deposited: | 08 Aug 2017 08:31 |
Last Modified: | 17 Dec 2023 16:45 |
URI: | https://nrl.northumbria.ac.uk/id/eprint/31541 |
Downloads
Downloads per month over past year